Who are we?

Dozenten
- Prof. Gustavo Alonso
- Prof. Thomas M. Stricker

Graduate assistants
- Win Bausch
- Irina Chihaia
- Christian Kurmann
- Cesare Pautasso
- Andrei Popovici
- Felix Rauch

Undergraduate assistants
- Rolf Bruderer
- Beat Fluri
- Patrick Grawehr
- Hampa Hug
- Slavisa Maslic
- Dejan Radovic
- Daniel Wagner
- (tba)

A little quizz ...

- Who has used the Internet?
 ... self taught?
- Who programs regularly?
 ... learned at ETH?
 ... self taught?
 Biggest program ...
 ..1000/10000/100000 LoC?
- Have you built or configured your own computer?
 ... self taught?
- Ever programmed in assembler?
 ... self taught?
- Do you consider yourself a hacker?

General objectives of the course

- Work at the interface between Hardware and Software.
- Basics of computer architecture (instruction set)
- Basic functionality of an operating system (user/system modes)
- Introduction to the Art of Systems Programming.
- Understand the software hierarchy in a computer
 programming tools and techniques
- Introduction to the areas “System Software” und “Computer Architecture”
 Operating systems
 Compilers
 Libraries (e.g., Communication)
Concrete goals:

• **Introduction to Computer Programming** in C and Assembler
 • Relation between C <-> Assembler

• **RISC Computer Architecture**
 • SPARC V8 Computer Architecture from the point of view of the programmer

• **Introduction to UNIX**
 • Operating System basics
 • Basic concepts of synchronous and asynchronous interrupts
 • Basics of I/O operations

• **General**
 Understand the way computers and complex software systems work and evolve

• **Last but not least ... have fun**

Course Program

• Introduction and goals
 • System layering
 • Operating system
 • Compiler, assembler, linker
 • Basics of computer architecture

• Programming in C

• SPARC Architecture

• Programming in Assembler

• System internals
 • Stacks
 • Subroutines
 • Traps
 • I/O Devices
 • Signals

Organization

All you will ever need to know:

Lecture: attendance recommended

(Foils will be available before the lecture on the web page of the lecture)

Exercises:

• ca. 10 Series - 1 or 2 weeks each
• 6 Assistants
• Exercises to be solved in groups of 2-3
• Getting the Testat = see the web pages
• SunSparc in E22, E26.1,E19

Textbook - Manual:

Exam:

• Written
• Material from Lecture and exercises; programming required (but on paper)

Requirements for the Testat:

• Complete 8 of the 10 exercises
• Exercises 9 are 10 are mandatory

Programming environment:

• SunSPARC Workstation (the real thing)
 • GNU-C-Compiler on UNIX

• Tkisem - SunSPARC V8 - Simulator
 • TKISEM for SUN
 • TKISEM in Linux for WinTel PC (at your own risk).
Exercises

• Introduction to UNIX
• Make, compiler
• Programming in C: (1)
• Programming in C: (2)
• Programming in assembler
 arithmetic expressions
 control structures
 copy block
 Stackframes
 Traps
 Sun Serial Port (in C, but low level)
• Programming Competition (how far can you optimize a program or why faster CPUs do not always help)
 not an exercise
 volunteers only
 great prices

Reference Books