Computer Systems Performance Verification vs. Validation

Analysis and Benchmarking o |
(37-235) Verification of a simulator

i _  |Is the simulator correct?
Analytic Modeling

Simulation
Measurements / Benchmarking * Is the simulator applicable?

Validation of a Simulator

. ' ?
Lecture/Assignments/Projects: Are the assumptions reasonable*

Dr. Christian Kurmann Simulators are complex pieces of soft-
Textbook: ware:
Raj Jain, “The Art of Computer Systems Perfor- .
mance Analysis”, 1991 Wiley & Sons, New York * Modularity
Topic of Today: * some generic modules
e Verification / Validation * some domain dependent modules

* some model specific modules
¢ Random Generators for

Simulation
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Example Example

(a) Model

ECL architecture

Statistics

FIGURE 25.1 Layered structure of the congestion simulation model.

Example 25.1 Figure 25.1 shows the modules for a computer network sim-
ulation developed for congestion control studies. The model simulates a
network with a number of source nodes, a number of intermediate nodes, FIGURE 25.2 Model of two interconnected local-area nctworks.
and a number of destinations, as shown in Figure 25.2. Packets start from

the source nodes, travel through a number of prespecified intermediate

nodes (called paths), and reach the destination. The packet sizes and ser-

vice times at various nodes are randomly distributed. In Figure 25.2, §;'s

are sources, R;'s are intermediate nodes, and D;’s are destinations. The

model simulates n sources sharing a common path throught 7 intermediate

nodes for any given 1 and m. This is equivalent to two local-area networks

connected through m intermediate nodes.
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Techniques:

» The usual game in software engineer-
ing...

* Modular design

» Debugging

 Structured walk-through
» Deterministic models

» Simplified cases

* On-line graphic animation
* Traces

» Continuity tests

* Degeneracy tests

» Consistency tests

» Seed independence tests
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Validation Techniques

Three Key Aspects of the system

» Assumptions

* Input parameter values

¢ output parameter values - conclusions
Methods

» Expert intuition

* Real systems measurements

» Theoretical results

Expert Intuition Example

0.0 02 04 06 08 10
Probability of packet loss
FIGURE 25.6 Example of problems caused by
invalid assumptions that are easily detected by experts.

Traces/Continuity tests

PKT=100 CR=4 §5=2 RS=2 ! This was a run with 100
packets, 4 credits per source,
two sources. Router service time
was twice that of the source.

Node: Pkt §/ Sample Delay
Time  Event Attempt Delay Estimate
0.00: S1: TIMR 1-1 ! Round trip delay-measuring
stop watch started by source 1
Sl: SEND 1- 1/ 1 ! Packet 1 sent by source 1
Sl: STRT ! Timeout alarm clock set by
source 1
S2: TIMR 2- 1 ! Round trip delay-measuring
stop watch started by source 2
$2: SEND 2= 1/ 1 ! Packet 1 sent by source 2
$2: STRT ! Timeout alarm clock set by
source 2
1.00: RL: QUED 1-1/1 I Packet 1 of source 1 was put

into a queue at router 1

Rls LOST! 2~ 1/1 ! Packet 1 of source 2 was lost due
to lack of buffer at router 1

3.00: Dl: RECD 1- 1/ 1 !Packet 1 of source 1 was
received at destination 1

S1: ACKD 1- 1 ! Acknowledgment for packet 1
was received at source

8§1: UPDT 1~ 1 3.00 3.00 ! Source 1 updated its estimate of
round trip delay

FIGURE 25.3 Sample packet cvent-trace output from the simulation modcl.
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Number of sources Number of sources
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Simple Statistical Methods for...

» Transient removal
e Termination tail removal
» Stopping criteria

Regenerative systems

Transient removal

* Long runs

* Proper initialization
» Truncation

* Initial data deletion

» Moving average of independent replica-
tions

* Batch means
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Truncation

1,2,3,4,5,6,7,8,9,10,11,10,9,10,11,10,9,10

Example 25.2 Consider the following sequence of observations: 1, 2, 3, 4,
56,789, 10,11, 10, 9, 10, 11, 10, 9, 10, 11, 10, 9,....

Ignoring the first observation (! = 1), the range of the remaining obser-
vations is (2,11). Since the second observation is equal to the minimum, the
transient phase is longer than 1.

Ignoring the first two observation (/ = 2), the range of the remaining
sequence is (3,11). Again, the next (third) observation is equal to the mini-
mum; the truncation continues with / = 3 and so on.

Finally, at / = 9 the range of the remaining sequence is (9,11), and the
tenth observation 10 is neither the minimum nor the maximum. The length
of the transient interval is therefore 9, and the first nine observations are
discarded.

A trajectory of this set of observations is shown in Figure 25.7. It is seen
from the figure that the transient phase for this data does indeed end after
nine observations. O

12 Transient
= interval
s
Value -
N
1 Lt [ B I | L 1
0 4 8 12 16 20

Observation number i

FIGURE 25.7 Plot of the data used in the truncation method example.
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Moving Average of Independent Replic.

(a) Moving average (b) Moving average
with k= with k=

Transient
interval
e
Mean Mean
xj xj Knee
J J

FIGURE 259 Moving average of independent replications.

1. Get a mean trajectory by averaging across replications:
1 m
'E,-=;z;x,-,-, j=12,...,n
i=

Set k = 1 and proceed to the next step.
2. Plot a trajectory of the moving average of successive 2k + 1 values:
- 1 &
%= ml;kx,«”, j=k+Lk+2,..,n-k
3. Repeat step 2, with k = 2,3,... until the plot is sufficiently smooth.

4. Find the knee of the plot. The value of j at the knee gives the length of
the transient phase.
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Systematic Method

Initial Data Deletion

1. Get a mean trajectory by averaging across replications:

1 m

Figure 25.8a shows the trajectories of several replications, and an aver-
age trajectory is shown in Figure 25.8b.

. Get the overall mean:
I
*r= ;Z i
j=1

Set I = 1 and proceed to the next step.

Assuming that the transient state is only / long, delete the first / ob-
servations from the mean trajectory and get an overall mean from the
remaining n — ! values:

[

B

n

4, Compute the relative change in the overall mean:
. -3

Relative change = L

3

5. Repeat steps 3 and 4 by varying / from 1 to n—1. Plots of the overall
mean and the relative change as functions of I are shown in Figure 25.8¢
and 25.8d. After a certain value of [, the relative change graph stabilizes.
This point is known as the knee, and the value of I at the knee is the
length of the transient interval.

16.01.03 - 10 37-235 Perf.Eval.&Benchmarking ~ © Stricker, Kurmann

Batch Means

|

Response

n 2n 3n 4n mn

Observation number

FIGURE 25.10 Transient removal by batch means
requires dividing the data into m batches of size n each.

1. For each batch, compute a batch mean:

1 .
T[=—Zx,‘j, i=12,..m

3. Compute the variance of the batch means:

Var(x) = ﬁ i x:-7%)°
i=1

Variance of
batch means

Transient
interval

Batchsize n
FIGURE 25.11 Transient removal by batch means.
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Stopping Criteria / Variance Estimation Batch Means

1. Compute means for each batch:

Independent Replication

. - 1 .
1. Compute a mean for each replication: X = ;zxij, i=12....m
1 notn =t
X = - Z i, i=12..m 2. Compute an overall mean:
J=na+1 1 m
2. Compute an overall mean for all replications: x= ;Zi‘
i=1

3=

" .
F= Z.fi 3. Calculate the variance of batch means:
i=1

- 1 & =2
3. Calculate the variance of replicate means: Var(x) = m—1 Zl (x,- - E)
i=
m
Var(%) = ;1_]__1 Z (xi- f)z The confidence interval for the mean response is
i=1 = -
[XF z1-a/2 Var(x)]

The confidence interval for the mean response is*

[XF z1—a/2 Var()] o = _
: OOV Tian) = 73 3 (i = Dis =)

Batc h means This quantity is also called the autocovariance.
TABLE 25.1 Autocovariance and Variance .
for Various Batch Sizes Method of Regeneration
Batch Size  Autocovariance  Variance
1 —-0.18792 1.79989
2 0.02643 0.81173 Regeneration
4 0.11024 0.42003 " points
8 0.08979 0.26437 Queue
16 0.04001 0.17650 length -
32 0.01108 0.10833 B
64 0.00010 0.06066
128 —0.00378 0.02992
256 0.00027 0.01133 Time
512 0.00069 0.00503 . N
E 25. 1] s.
1024 0.00078 0.00202 FIGURE 25.13 Regeneration poin
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Suppose you have a regenerative simulation consisting of m cycles of sizes Ran d O m G e n eratO rS

A1, A2, .-, ttm, Tespectively. Cycle means are given by

Used for simulators
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True randomness is not desired
213y (reproducability for debugging)
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Statistical properties must be random

The correct procedure to compute the overall mean and its confidence in-
terval is as follows:

No cryptographic strength required

1. Compute cycle sums:
n;
Yi= z Xij
j=1

2. Compute the overall mean:

3. Calculate the difference between expected and observed cycle sums:
wi = y; — X, i=12..m

4. Calculate the variance of the differences:

P
Var(w) =52 = mef
i=1

5. Compute the mean cycle length:

3=

Fi=

m
dm
i=1

The confidence interval for the mean response is given by

T Sw
XF 21~ ——
1oy Jm
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Example

Xn = f(xn—]’xn——Z’--‘)
One such function is
Xy = 5x,,_1 + 1 mod 16

x1 =5(5)+ 1 mod 16 = 26 mod 16 = 10

10, 3, 0, 1, 6, 15, 12, 13,2, 11, 8, 9, 14, 7,
4,5,10,3,0,1, 6,15, 12, 13,2, 11, §, 9,

- cycle length seed.

Seed

foe )

« Tail __.’ Cyclelength

«———— Period
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Properties

1. It showld be efficiently computable. Since simulations typically require
several thousand random numbers in each run, the processor time re-
quired to generate these numbers should be small.

. The period should be large. A small period may cause the random-num-
ber sequence to recycle, resulting in a repeated event sequence. This may
limit the useful length of simulation runs.

3. The successive values should be independent and uniformly distributed.

The correlation between successive numbers should be small. Correla-
tion, if significant, indicates dependence.

[

+ Linear-congruential generators
+ Tausworthe generators

+ Extended Fibonacci generators
» Combined generators
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Linerar Congruence Generators

Xy, =a" mod m

Xpn=ax,_1+bmod m

a=23and m=108 + 1.

full-period generator.
lower autocorrelation

Xp = (234 + 1)xp—1 + 1 mod 2%
xp = (2%® + 1)x,_; + 1 mod 2%
Multiplicative LCG
X, =ax,_p mod m

m = 2k
Xp = 5X,1_1 mod 25

X, = Tx,_1 mod 23
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Examples

m # 2k

Xp = 3x,-1 mod 31

53 mod 31=125mod 31=1

Xn = 75xn—1 mOd(231 -1)
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Chi-Square Test

k
(0i —&;)?
D= Nk S A

i
identically distributed (IID) U(0, 1),
testing random-variate generators.

D has a chi-square distribution

level of significance a

computed D is less than the X[zl—a;k—I]“

read from Table A.5

Graphical Tests
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Plot of overlapping pairs
Tausworthe generator x> + x + 1.

Shiftregister Generators

TAUSWORTHE GENERATORS

bn = ¢q—1bn-1® cq-2bn—2® Cq_3bn_3@ - B cobu—yq

T+ X341
D7b(n) + D3b(n) + b(n) = 0 mod 2
b7+ byi3+ b, = 0 mod 2,
bi=bydb=191=0
by=bdb=101=0
bo=bsdb=191=0
boo=bs@®by=101=0
bu=bdb=0p1=1

e Y
A4

N e

1111111 0000111 0111100 1011001 0010000
0010001 0011000 1011101 0110110
0000110 0110101 0011100 1111011

0100001 0101011 1110100 1010001  Period of 127.

1011100 0111111 1000011 1000000.
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Graphical Tests
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Plot of overlapping pairs
Tausworthe generator x'5 + x* + 1.

Xn+1

Two-dimensional uniformity
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