
Combining Task- and Data Parallelism to Speed up Protein
Folding on a Desktop Grid Platform

Is efficient protein folding possible with CHARMM on the United Devices MetaProcessor?

B. Uk1, M. Taufer1, T. Stricker1 G. Settanni2, A. Cavalli2, A. Caflisch2

1 Department of Computer Science 2 Department of Biochemistry
ETH Zurich University of Zurich

CH-8092 Zurich, Switzerland CH-8057 Zurich, Switzerland
buk,taufer,stricker@inf.ethz.ch settanni,cavalli,caflisch@bioc.unizh.ch

ABSTRACT

The steady increase of computing power at lower and lower cost enables molecular dynamics simulations to investigate
the process of protein folding with an explicit treatment of water molecules. Such simulations are typically done with
well known computational chemistry codes like CHARMM.
Desktop grids such as the United Devices MetaProcessor are highly attractive platforms, since scavenging for unused
machines on Intra- and Internet delivers compute power that is almost free. However, the predominant programming
paradigm for current desktop grids is pure task parallelism and might not fit the needs for protein folding simulations
with explicit water molecules. A short overall turn-around time of a simulation remains highly important for research
productivity, but the need for an accurate model and long simulation time-scales leads to tasks that are too large for
optimal scheduling on a desktop grid.
To address this problem, we introduce a combination of task- and data parallelism as a well suitable computing
paradigm for protein folding investigations on grid platforms. As a proof of concept, we design and implement a
simple system for protein folding simulations based on the notion of combined task and data parallelism with clustered
workers. Clustered workers are machines grouped into small clusters according to network and CPU performance
criteria and act as super-nodes within a desktop grid, permitting the utilization of data parallelism in addition to the
task parallelism.
We integrate our new paradigm into the existing software environment of the United Devices MetaProcessor. For a test
protein, we reach a better quality of the folding calculations than we reached using just task parallelism on distributed
systems.

Keywords

Protein folding, computational grid, best-first search, data and task parallelism, CHARMM, United Devices MetaPro-
cessor.

1. INTRODUCTION

Protein folding is a research area in biology that could greatly
benefit from the vast amount of almost free computational
power provided by widely distributed computation on the
Internet. Accurate molecular dynamics (MD) simulations
of proteins are time consuming. In particular, the explicit
treatment of water and the Particle Mesh Ewald Method
(PME) method limit the accessible time scale to less than
one microsecond of simulated time, while proteins in real life
take microseconds to seconds for the folding process. The
computational resources must probably be increased by a
million to deal with this kind of application.
Protein folding is essentially a search for the best fitting
conformer (molecule state) and there is a lot of parallelism

in the application, but the need for an accurate and long
running simulation with extended time-scales leads to tasks
that are too large for optimal scheduling on a widely parallel
computing platform like a desktop grid. Moreover, a short
overall turn-around time of a simulation remains highly im-
portant for research productivity. To address the need for
accuracy and effectiveness in protein folding, we propose to
use task- and data parallelism within the CHARMM code in
this technical report. With this new paradigm the number of
CHARMM applications suitable for running on widely dis-
tributed platforms and grids can be increased significantly.
As a proof of concept, we introduce a simple distributed
computation model based on clustered workers forming small
clusters of PCs within the grid environment of our widely
distributed platform. The use of data parallelism is dele-
gated to the clustered workers, that are able to act as su-
percomputer nodes and speed up the turn-around time of a

1

partial simulation, despite the need for accurate and time
consuming methods for computation. Clustered nodes rely
on proximity and strong interconnections among their pro-
cessors. We find such situations everywhere, i.e. in office
workgroups sharing a single Ethernet switch, in machine
rooms with smaller clusters or in student computing rooms
at a university. The suitability and the precise character-
istics of CHARMM for task parallelism on computational
grids is established in previous work of our group [1, 2] in
which we successfully migrated the CHARMM code for sim-
ple but fairly coarse grain protein folding simulations (e.g.
with implicit solvent and no PME method) to the widely dis-
tributed platform of United Devices (UD): the UD MetaPro-
cessor [3]. We also collected experiences with data parallel
CHARMM using accurate methods like PME and described
an extensive workload characterization in [4].
In this technical report, we also consider the UD MetaPro-
cessor as a good platform for task parallel computation, but
extend the previous work by combining the two paradigms
of task- and data parallelism in one single system. This
requires some small engineering changes to the distributed
computing infrastructure which can be accommodated with
minor changes to the UD MetaProcessor platform. The dis-
covery of suitable candidates of processing nodes (PCs) for
clustered workers in general remains a challenging issue sub-
ject to past and future research in the grid community. Fo-
cusing on the feasibility of an application in this technical
report, we go for the more suitable candidates, taking ad-
vantage of a well-mapped and well-known campus comput-
ing infrastructure, but in general, many more factors of the
infrastructure for such a system must be taken into account -
most notably the available network bandwidth and latency
between the nodes, but also the heterogeneity caused by
different CPU clock rates and the dynamic load behavior
due to other processes on the nodes. Most issues related to
the discovery of network topologies have been discussed and
implemented in ReMoS [5]. An algorithm for dynamically
building clusters from network mapping information is given
in [6].
To demonstrate the feasibility of large scale and accurate
distributed folding simulation in this technical report, we
quantify the increase of the quality of the folding simula-
tions due to clustered workers and report our experience
with clustered workers implemented on to the commercial
United Devices MetaProcessor platform. We can comment
on the communication requirements, the handling of failures
and the security.
Previous research addresses the issue of protein folding sim-
ulations on distributed platforms. CHARMM on the dis-
tributed platform Legion has been studied in [7], but their
implementation is limited to high-performance, strongly in-
terconnected clusters and a restricted number of tasks, while
our work applies more broadly to commodity desktop PCs
connected by a wide variety of network technologies. The
Folding@home project conducted by the Pande group at
Stanford University [8, 9] relies on the TINKER molecular
dynamics package. This project is based on task parallelism
and an exhaustive search using a generate-and-test method
on PCs connected via Internet in which systematic gener-
ations of possible solutions for the protein folding is done
without any support of heuristic functions.
In Section 2, we briefly introduce the protein folding pro-
cess using the well-known computational code CHARMM.

We also identify the algorithmic approach of protein folding
as a best-first search algorithm with particular depth-first
and breadth-first components. In Section 3, we state the
limitations of protein folding on current widely distributed
systems and address the solution to these problems by pre-
senting a combination of task- and data parallelism as a very
natural computing paradigm for protein folding or similar
simulations in computational chemistry. In Section 4, we
present our prototype of a system that uses task- and data
parallelism on the United Devices MetaProcessor, a plat-
form for widely distributing computing that we regularly
use in our desktop grid. In Section 5, we evaluate our sys-
tem for speed and accuracy and present experimental results
combining task- and data parallelism for a specific protein,
the GSGS domain. In Section 6, we summarize what we
learned from our experiment and conclude.

2. PROTEIN FOLDING

2.1 The Computational Code CHARMM
CHARMM is a code for simulating the structure of biolog-
ically relevant macromolecules (proteins, DNA, RNA) [10].
The package uses classical mechanical methods to investi-
gate potential energy surfaces derived from experimental
and ”ab initio” quantum chemical calculations [11]. We use
molecular dynamics (MD) simulations at constant temper-
ature to investigate the protein folding process. In these
simulations the Newton equation of motion of the system
(protein + thermal bath) is discretize and solved by an inte-
gration procedure (Verlet algorithm). The force applied to
the atoms in each step is calculated by the negative gradient
of the CHARMM potential energy [11].

2.2 Modeling Protein Folding as a Search Al-
gorithm

To simulate protein folding, we start from an unfolded con-
formation with random torsion angles. A heuristic function
guides the search for the folded conformation. This func-
tion provides an estimate on how closely a simulated con-
formation matches to the experimental structure observed
by x-ray crystallography or NMR spectroscopy. The func-
tion maps each simulated conformation into a measure of
desirability called the quality factor. The quality factor used
in this technical report is the Root-Mean-Square Deviation
(RMSD) of the atomic coordinates (in Angstroms, Å) from
the folded structure determined by NMR.
The search for a trajectory from an unfolded to a folded
conformation can be seen as a search through a search tree
enumerating a large number of different conformations of the
molecule under investigation. To find trajectories leading to
conformations close to the native (folded) conformation of a
protein, a well guided search procedure is used to find a path
through the tree, starting from a conformation representing
the initial state, then going through the successors so far
until either a fixed number of simulation steps is done or a
given quality factors is reached. The full search tree with
all the possible conformation may become extremely large
and might exceed the computational capability of all com-
puters available in a grid. However, like in many brute force
searches, a large number of possible paths in the search tree
can be pruned and do not need to be generated nor to be
explored. In our approach to the folding process, the search

2

process represents the tree implicitly as a set of production
rules (production of the nodes of the tree).
In our search for the optimal match of a conformations,
we do a best-first search trough the large tree of simulated
molecule conformations. Such a search combines the bene-
fits of the depth-first search (hill climbing) and the breadth-
first search (exhaustive enumeration) procedures.

2.2.1 Molecular dynamics simulation as depth-first
search

A MD simulation along a certain number of time steps is the
basic quantum of our protein folding computation. Such a
simulation goes way down into the tree of possible confor-
mations and can be seen as a depth-first search. We depict
the trajectory of such a simulation as a single arc in our
tree. A simulation is the basic work-unit (minimal schedul-
ing quantum) in our task parallel version of protein folding.
A work-unit is a linear chain of simulation time steps with-
out any branches. For cost reasons, we evaluate the quality
factor only periodically at certain snapshots along a work-
unit simulation, typically around every 100 simulation steps.
The result returned by a work-unit is the conformation with
the lowest quality factor.

2.2.2 Randomizing conformations as breadth-first
search

The protein folding process is explored by processing multi-
ple work-units simultaneously and in parallel. This process
leads to breadth-first searches through a tree of possible con-
formations calculated by the work-units through MD simu-
lation. The branching of the search tree is achieved by the
introduction of some disturbance by randomize changes to
the best conformation found so far. The random factor is in-
troduced by changing the velocities of the atoms to random
values while preserving the temperature. The effectiveness
of this kind of algorithms in molecular dynamics simulations
has been discussed in [12].
The branching factor is determined by the size of the work-
pool, the set of work-units in process and the set of work-
units waiting to be assigned to a worker. The size of the
work-pool can be either fixed or can change dynamically
during the folding process. Fitting the relatively static con-
figuration of our desktop grid and considering the better
reproducibility, we fix the size of the work-pool at the be-
ginning of the folding process in this technical report. For
larger and more dynamic desktop grid configurations, a dy-
namic work-pool might be more suitable. New work-units
are generated at regular, fixed intervals during the folding
process. The new generated units fill the empty spaces in
the work-pool and substitute the work-units which have ter-
minated with a result.
Figure 1 shows a partial search tree. Each nodes of the
tree corresponds to a conformation and is characterized by
a quality factor (red numbers close to the nodes). From each
node of the tree, a set of arcs leads to further nodes. An
arc stands for an entire MD simulation (search in depth)
that starts from the conformation in this node but is based
on random velocities of the atoms (label on the arc). The
successors of a node are the conformations found in the com-
pleted work-units starting from this node and are possible
candidate for the generation of new work-units at the next
interval. In the picture, we show three update phases for
which new work-units are generated and queued in the work-

pool. In Figure 1, the starting protein conformation (Mol1)
at the top is a best conformation known at the time. We also
assume an empty work-pool in that state and see that for
each empty spot a new work-units with a different random
seed is generated (r1, r2, etc). In the next update (level be-
low) only two work-units have terminated their simulation,
while two others are either in progress at the workers or
waiting to be assigned to a worker. Among the work-units
that reached a result, the conformation with best quality
factor (Mol2) is chosen and two new work-units are gener-
ated from that conformation using random seeding and they
are added to the work-pool (server queue). Note that the
work-units always remain in the work-pool queue until fin-
ished. During the third update, all the four work-units are
finished with their simulation. At this time the best con-
formation (Mol3) is used to add four new work-units to the
work-pool.
If a phase results in no improvement of the quality factor,
the newly calculated conformations are discarded and more
randomized work-units are generated from the current best
conformation. If this situation occurs repetitively, the pro-
tein folding simulation is stuck in a local minimum, and a
different strategy is needed to escape this minimum. To
deal with local minimum, we do backtrack to earlier con-
formations that are still maintained in the work-pool. It is
extremely unlikely that the protein folding simulation pro-
cess results in the same conformation over and over again
and this virtually excludes the possibility of cycles in the
search path.

3. COMBINING TASK- AND DATA PARAL-
LELISM IN PROTEIN FOLDING

3.1 Limitations of Protein Folding on Existing
Systems

The steady increase of compute power has enabled the use of
more advanced molecular dynamics simulations techniques
to investigate the 3-D structure of biological macromolecules
[13]. The basis of these calculations relies upon several mod-
els of varying complexity and accuracy that range from ab
initio calculations, based on the approximate numerical so-
lution of the Shrödinger equation for the electrons of the
system [14] to highly simplified models where only few de-
grees of freedom are taken into account [15, 16]. Obviously
the computational cost of each model is directly related to
its complexity and accuracy. In addition there is a relation-
ship between simplicity and ease of distributed calculation.
Highly advanced and complex calculation methods are much
harder to carry out in a highly parallel and distributed en-
vironment.
The simulated time scales for the biological phenomena in
question range from picoseconds (e.g. for an enzymatic reac-
tion) to seconds for the most advanced processes of protein
folding. For the study of aggregation and fibril formation,
the time scales can extend to multiple days. On a micro-
scopic side, the physical laws governing each phenomenon
are only captured in part by the resolution of the available
models. Thus, depending on the phenomenon we want to
describe, we have two requirements: we need to simulate
enough time for the phenomenon to occur and we need a
sufficient resolution for the model to be accurate. In short
we need as much computing power as we can get for those

3

Mol_1

Mol_2

Mol_3

80

94

100

r1
r2

98
r3 r4

r6

95

r5

93

r7

r8

r10

Work−pool:

for protein folding
time

up
da

te
up

da
te

up
da

te Mol_1,r1 Mol_1, r2 Mol_1,r3 Mol_1,r4

Mol_3,r7 Mol_3, r8 Mol_3,r9 Mol_3,r10

Mol_1,r3 Mol_1, r4 Mol_2,r5 Mol_2,r6

96

r9

Figure 1: Example of partial search tree for a protein folding simulation. In each
update phase (level) some new work-units are generated from the conformation with
the best quality factor observed so far and queued in the work-pool.

calculations.

3.1.1 Demand for large spectrum of folding confor-
mations

In addition to a good resolution and an appropriate time
scale, the simulations require the test of many randomized
conformations in the search of an optimal fit to the observed
folded structure of the protein. The search is difficult due
to the enormous number of different 3-D conformations that
a protein or a structured peptide can assume. Although
the precise number of states in the search space can not be
counted, it becomes clear that protein folding investigation
is an extremely resource demanding, time consuming pro-
cess and therefore the most advanced distributed compute
platforms should be considered.

3.1.2 Benefits of more accurate calculation models
For the folding of small proteins and structured peptides,
which naturally occurs in the µs to ms time scale, several
models are being used. We will focus our attention on the
empirical models with implicit or explicit treatment of sol-
vent [10, 17]. In the implicit solvent models, all atoms of
the solute are taken into account, while the effects of sol-
vent (charge screening, free energy of solvation etc.) are
approximated with expressions that depend on the coordi-
nates of the solute atoms [18]. The main advantage of this
approach consists of integrating out the degrees of freedom
of the solvent, thus dramatically reducing the computational
cost of the calculation [19]. On the other hand, for systems
where the molecular nature of water plays a relevant role,
this approximation does not hold and may lead to inaccurate
results.
A step forward in the direction of more accurate (and more
complex) descriptions is made by models that explicity rep-
resent water molecules. The atoms of the solute are im-

mersed in a box of water molecules with periodic bound-
ary conditions. The water box should be large enough to
give negligible interactions between images of the solute in
neighboring boxes. This approach leads usually to a 10-
fold increase of the number of atoms of the system and
consequently to a two order of magnitude increase of the
computational cost of the simulation, if no cutoff on the
maximal distance between interacting atoms is used (usu-
ally two body interactions are the rate limiting step of the
calculation). The use of a cutoff allows reducing the compu-
tational expenses but introduces some distortions and inac-
curacies that may be partly corrected using Particle Mesh
Ewald method [20]. Opposite to implicit water simulations,
where the small number of atoms poses strong limitations
to the parallelization of the calculation (because of the large
amount of communication needed between processors), ex-
plicit water simulations with the use of cutoffs allow to take
advantage of parallelization on parallel systems.

3.1.3 Significance of short turn-around time
Biological studies involving protein folding often require a
fair amount of manual computational steering by an expert
understanding the biological meaning of the simulation re-
sults. Therefore simulation environments with short turn-
around times are preferred.
The scalability of the MD code with explicit water molecules
on parallel machines is fundamental for the reduction of
turn-around time of simulations. PME, despite the use of
the Fast Fourier Transform, was shown to scale well, at least
on some architectures [21] providing some significant reduc-
tion of the turn-around time.

3.1.4 Computational requirements
A protein folding simulation results in a search through a
very large conformation tree in which high parallelism in

4

breadth is needed in order to limit the total turn-around
time of the folding investigation. To cope with this problem,
large number of CPUs is required. Accurate models cause
long turn-around times for work-units, making the search in
depth a high time consuming process.

3.2 Data Parallel CHARMM
The amount of data parallelism in CHARMM and conse-
quently the scalability of the parallel execution of a work-
unit was studied in previous work by others [22] and in our
group [4, 23]. In our previous study we have proven that
on small clusters of PCs, the data parallel CHARMM scales
well up to 8-16 nodes using message passing systems like
SCore [24] on Gigabit Ethernet (similar results have been
measured for Fast Ethernet in [23]). Marginally better scal-
ability is achieved using more cost-demanding technologies
like Myrinet (up to 32 nodes).

3.3 Task Parallel CHARMM
In [1, 2], we have investigated the protein folding process
based on task parallelism and best-first search for a desk-
top computational grid, the United Devices MetaProcessor
(a detailed description of the platform is reported in Sec-
tion 4). In that previous study, we took into account fold-
ing processes with implicit treatment of water and no PME
model so that the turn-around times were short while the
results missed some accuracy. The grid platform was able to
provide a very large range of investigation using a scheduling
approach for the work-units (tasks) based on master-worker
setting and eager scheduling. The protein folding algorithm
used has turned out to be inherently fault tolerant : because
the work-units generated from a certain conformation are
identical except from a random number seed that is used to
assign new atom velocities, the results are only marginally
affected by the infrequent loss of an online work-unit. We
also proved that the calculation of protein folding using the
best-first search on the chosen grid platform is robust against
heterogeneous environments and against limited communi-
cation capabilities.

3.4 Extending the Scope of Calculations
Looking at the demands of protein folding simulations listed
above, it appears to us that the combination of task- and
data parallelism is a natural paradigm for protein folding
and similar calculation in computational chemistry. The
high level of task parallelism provided in task parallel
CHARMM [1, 2] can be used for large searches in breadth
required by the protein folding process. To limit the turn-
around time of the work-units characterized by accurate
computation methods (i.e. explicit treatment of water, PME
method), the data parallelism present in data parallel
CHARMM [4, 23] can be used for the speed-up of the search
in depth.

4. A SOFTWARE SYSTEM COMBINING
TASK- AND DATA PARALLELISM

4.1 The United Devices MetaProcessor Plat-
form

The United Devices MetaProcessor platform (MP platform)
[3, 25] provides an environment for running compute-intensive
tasks in a highly distributed way over many desktop-class

machines in an Intranet (corporate-wide) or in the Internet
(worldwide). The MP platform is well established for appli-
cations with low communication-to-computation ratio and
involving coarse-grain parallelism and with no dependen-
cies between work-units. Figure 2 shows the MetaProcessor
platform architecture and components.

Figure 2: MetaProcessor platform overview.

The MP server is the centerpiece of the software system
that links the participating agents to the MP platform. It
is responsible for scheduling, as well as for the distribu-
tion of task modules, resident data and work-units to the
agents, and for receiving results returned by the agents.
The management server allows the internal data structures
to be accessed via the Management API (Application Pro-
gramming Interface), allowing for instance the submission of
work-units and retrieval of results. The database contains
all information relevant to the MP platform. The database,
MP server and Management server form the server side of
the MP platform.
The UD agent is a small program which runs on each partic-
ipating device (or worker). The agent communicates with
the MP server to request work-units, resident task- and data
modules as needed, executes the task module on the partic-
ipating device, and returns the task’s results to the server.
The management console provides a web-based interface to
the MP platform, allowing administrative tasks to be per-
formed. Work-units are submitted to the server via the
Management API by a controller process which performs
the generation of work-units and the retrieval of results.

4.2 Limits of the UD MetaProcessor
The UD MetaProcessor was originally designed for environ-

5

ments in which each node operates as an isolated, indepen-
dent worker. As such, the MP platform works well for sit-
uations involving pure task parallelism where, for instance,
users let their computers at home participate in a calcula-
tion. The MP platform currently does not support any par-
allel computing environments like MPI or OpenMP which
allow data parallel computations. On the other hand, instal-
lations of groups of PCs connected by switched 100 MBit/s
Ethernet network interconnections are commonplace nowa-
days and are powerful enough to support data parallel cal-
culations in small clusters. Such clusters could be integrated
with the MP platform to perform data parallel computation
inside the cluster in addition to the task parallelism of the
MP platform. In our prototype, we implement an exten-
sion to the MP platform to be able to accommodate such
combined parallel models of computation using MPI with-
out any support from the MP platform. In the future, we
would like to improve the integration of such an environment
within the MP platform to facilitate future applications of
combined task- and data parallelism.

4.3 The Architecture of Clustered Workers
A combination of task- and data parallelism is achieved by
extending the MP platform by our implementation of clus-
tered workers in which a single compute node is built stat-
ically from a small PC cluster instead of a single CPU. Al-
ternatively, we could also see a clustered worker as several
CPUs that dynamically team up to form a small cluster of
PCs within the distributed computing platform.

4.3.1 Static clustering of CPUs into a clustered worker
A first, simple solution extends the UD agent software to be
able to control a clustered worker of 2-16 nodes. As the MP
platform can handle different agents and task executables
for different operating systems, it can easily handle clustered
workers with different node architectures: uniprocessor PCs,
SMP machines, small clusters of PCs. The agent registers
itself with the MP server and identifies itself either as a
uniprocessor PC or a clustered workers communicating its
node architecture along with corresponding information like
the OS and the CPU clock rates.
The architecture of the agent is fixed and cannot change dur-
ing the lifetime of the agent. The server sends the proper
task executable to the workers and does not need significant
re-engineering since the necessary functionality is already
provided by the present MP server. The main disadvantage
of this approach is that we largely rely on static configura-
tion tables and network maps to determine the structure of
the platform. However, this solution was fairly easy to im-
plement and delivered the experimental results presented in
this technical report for widely distributed protein folding
with CHARMM.

4.3.2 Dynamic clustering of CPUs into a clustered
worker

A more advanced system allows clustered workers to form
dynamically at run-time. Such a software system requires a
significant number of extensions to the MP server software
and to the agent software. At the time of registration with
the server or even later at the time of scheduling a work-
unit, the UD agent tries to find other agents in its local net-
work which could be possible candidates to form a clustered
worker. The process is achieved easily by means of a simple

resource discovery protocol. The server can keep track of
this information and can be enabled to find suitable groups
of nodes for forming clustered workers whenever a scheduling
decision is made. The controller process in the UD system
defines the performance requirements (either dynamically or
statically) for the specific work-units of an application and
communicates these requirements to the server. The server
software suggests a clustered worker configuration as a com-
bination of several nodes together. The server also instructs
the participating node to establish efficient message passing
or shared memory communication among the CPUs to form
the clustered worker.

4.3.3 Engineering issues of clustered workers
The communication requirements for task parallelism (i.e.
the communication between the server and the workers) and
for data parallelism (i.e. the communication within a clus-
tered worker) are quite different. In the first case, a regular
Internet-style, best-effort TCP/IP communication is suffi-
cient while in the latter case a low-latency, high-bandwidth
communication facility is required to link the CPUs of a
clustered worker. Note that the PCs for clustered workers
are selected in the system because they have a good network
connection available. Further candidates for such commu-
nication support are shared memory nodes in the case of
a SMP worker, or nodes in PC clusters with high perfor-
mance interconnects for the MPI message passing library
in the case of a clustered worker. To ensure that a clus-
tered workers can function correctly, it must be ensured that
the necessary communication libraries are available on each
node of the clustered worker and that they do not affect the
PCs in a negative way. Resolving the engineering details of
such an architecture is quite a challenge since most high per-
formance communication systems require kernel extensions
that are hard to distribute in Intranet or in Internet and
remain difficult to maintain for a large variety of different
PCs.
The system with clustered workers must still be able to han-
dle failures of nodes in a reasonable manner. The current
MP platform does not actively react to failures of workers
but shifts the fault tolerance problem to the scheduling of
the application. In a clustered worker setting, reacting to
faults must be proactive since all related nodes would have
to react accordingly to the fault of a single CPU, for exam-
ple by aborting the work-unit after a certain timeout and -
in the dynamic allocation case - by re-registering for single-
node operations.
Furthermore, incorporating clustered workers to a platform
for widely distributed computing must be leveraged against
the efforts to provide security and proper encapsulation of
the agent of a worker. In the current MP platform, all com-
munication between the server and the workers is encrypted.
For performance reasons, encrypting the communication in-
side a clustered worker is a performance limiting approach
and the nodes of a clustered worker must rather trust each
other as well as the network they are sharing. While these
aspects could easily be ignored in our test-case with static
allocation, they remain a challenge for future work on dy-
namic allocation of clustered workers.

4.3.4 The prototype of clustered workers for the MP
platform

To test our concept of clustered workers, we worked around

6

the limitations of the current MP platform to be able to
allow a single UD agent to act as the master node in a sin-
gle CHARMM calculation task involving a small cluster of
2-8 nodes. To do this successfully without actually making
changes to the MP server platform, we required tight con-
trol over the client machines involved in the computations.
For this first prototype, we manually determined which ma-
chines would act as master nodes, and which machines would
join them to form clusters. We made use of the fact that
task executables are always started in a subdirectory di-
rectly beneath the working directory in which the UD agent
is started. To be able to start MPI jobs, we designed the
task module to invoke a certain shell-script which would then
start the actual task as an MPI job on the predefined nodes.
This script takes a parameter which specifies the actual task
executable to be invoked. First, a suitable CHARMM ex-
ecutable binary was compiled with the MPICH cluster li-
brary. To avoid library dependency problems, this binary
was statically linked with all required libraries. This exe-
cutable was then wrapped using the UNIX “shar” tool, and
this shar archive was modified to invoke the shell-script men-
tioned above after extracting the CHARMM binary, passing
the CHARMM binary’s file name as a parameter. On each
master node, the UD agent was installed in an empty direc-
tory. In addition, the MPICH tools had to be installed on
each machine participating. In the working directory of the
UD agent, a short shell-script was installed which invokes
“mpirun” with the actual task binary, the correct number
of nodes and the machine-file containing a list of the ma-
chines belonging to the respective clustered worker.

5. EVALUATION WITH A PROTEIN FOLD-
ING CALCULATION

Our prototype system using task- and data parallelism for
highly distributed CHARMM calculation on the UD MetaPro-
cessor is carefully evaluated with test calculations for protein
folding simulations of the GSGS as an experimental molec-
ular structure.

5.1 The Peptide used in this Test Case
The GSGS is a 20-residue synthetic peptide with a stable
three-stranded antiparallel β-sheet fold. It has been studied
experimentally in aqueous solution by nuclear magnetic res-
onance (NMR) and theoretically with an implicit solvation
model [26, 27]. Experimental and theoretical studies indi-
cate that at temperatures around 300 K, the GSGS popu-
lates a single structured form (see Figure 3) in equilibrium
with a random coil. Due to its small size, the GSGS peptide
is an ideal system to test theories and algorithms dealing
with protein folding.

5.2 The Experimental Set-up
The initial conformation of the GSGS is random with a qual-
ity factor of 7.5 Å (RMSD from folded structure). In the
folding investigation, we can either go through a fixed num-
ber of steps in a fixed amount of simulation time and look
at the end the quality factor obtained or we can run the
simulation until an aimed quality factors is reached.
For the analysis of the performance and the quality of results
achieved with pure task parallelism and with the combined
task- and data parallelism, we fixed the total time of fold-
ing simulation to about 60 hours. We compare the quality

Figure 3: The folded structure of the GSGS, a 20-
residue synthetic peptide.

factors reached at the end of the 60 hours on a traditional
task parallel UD platform (testbed with task parallelism) us-
ing only isolated workers (each machine is considered as iso-
lated node of the grid) with the quality factors reached on an
innovative platform that comprises the same number of ma-
chines but with some of them grouped into clustered workers
(testbed with task- and data parallelism). Table 1 reports the
two different testbed configurations.

Testbed with Testbed with
task parallelism task- and data parallelism
6 workers with 1GHz 6 workers with 1GHz
6 workers with 933MHz 6 workers with 933MHz
6 workers with 600MHz 6 workers with 600MHz
6 workers with 500MHz 6 workers with 500MHz

18 workers with 400MHz 6 clustered workers
each with 3 x 400MHz

Table 1: Different CPU clock rates and number of
workers for the two different testbed configurations
considered, “purely task parallel” and “combined
task- and data parallelism”

The grouping of the CPUs into clustered workers is based
on network speed and CPU performance criteria. With a
map of our network at hand, we look at the kind of inter-
connection between the machines and estimate their turn-
around time per work-unit. Figure 4 reports the average
turn-around time for work-unit on each kind of a machine.
Since the older machines with just a 400 MHz CPU clock
rate lead to a larger turn-around time per work-unit, we
group three of these older machines into a clustered workers
(3 x 400) and achieve a more powerful super node corre-
sponding to an above 1GHz CPU. Figure 4 confirm that
such clustered workers (3 x 400) can significantly shorten
the turn-around time of the work-units.
Clustering weaker CPUs into clustered workers results in a
reduced variability of the average turn-around times for dif-
ferent kind of workers as reported in Figure 4. We still main-
tain the heterogeneity in the grid by choosing an appropriate

7

400 500 600 933 1000 3x400
0

1000

2000

3000

4000

5000

6000

7000

tim
e

(s
ec

)

kind of workers

Average turn-around time of work-units returned to
the server - work-unit size of 2500 simulation steps

Figure 4: Average turn-around time for work-unit
on the several kind of workers taken into account.
Besides the isolated workers (1000 MHz, 933 MHz,
600 MHz, 500 MHz and 400 MHz), we look at
clustered workers composed by three machines each
with 400 MHz CPU clock rate (3 x 400)

scheduling interval length between two renewal processes of
the work-pool. We report in [2] that the remaining het-
erogeneity, contributing some additional randomness, helps
to get better results for the folding investigation. For the
folding simulation test case, the number of work units and
their sizes is roughly the same for both platform candidates.
The simulation comprises 2500 steps per work-unit and the
work-pool size is 120.

5.3 Differences in Scheduling Characteristics
Figure 5 reports the number of work-units returned (left y
axis) to the server by the different kind of workers in the
testbed with pure task parallelism, in which each node of
the grid is an isolated worker, for a simulation of 60 hours.
The figure also graphs the number of work-units (accepted
work-units) which effectively contribute to an improvement
of the quality factor (right y axis). In Figure 6 we report
the same information for the testbed with task- and data par-
allelism which groups the slower machines (400 MHz CPU
clock rate) into six clustered workers (each one with three
nodes of 400 MHz, 3 x 400). The left y axis of Figure 6
displays the number of returned work-units for each class of
workers, the right y axis shows the number of accepted work-
units, which improve the quality factor. For both Figure 5
and Figure 6, while the left y axis tells us about the overall
effort in the search process, the right x axis tells us about
the successful work-units that actually help to improve the
quality factor in the folding calculation.
For a investigation of the architectural differences in the
platform, we use the same amount of machines (42 ma-
chines) for the same amount of total simulation time (60
hours). At the end of the experiment with several sim-
ulations, both testbed configurations completed a similar
amount of work-units returned to the server (compare Fig-
ure 5 left y axis and Figure 6 left y axis). However, clustered
workers combining task- and data parallelism provides larger

number of work-units that act on the quality factor improv-
ing it (i.e. the accepted work-units) than workers with just
task parallelism. This aspect is clearly visible if we com-
pare the number of work-units accepted for the 18 400 MHz
nodes (18 x 400) on the testbed with plain task parallelism
(see Figure 5 - right y axis) with the number of work-units
accepted for the six clustered workers that are made up with
three 400 MHz nodes each (see 6 x (3 x 400) in Figure 6 -
right y axis).

5.4 Differences in the Quality Factors
A higher number of conformations accepted leads most likely
to a better quality factor in the overall results. For the
testbed with clustered workers, we get indeed better quality
factor than for the testbed with with only isolated workers -
and this despite the same computational resources involved
and the same amount of computation done, just due to bet-
ter scheduling and better guidance of the best-first search.
Figure 7 and Figure 8 show respectively the best quality
factor reached for several protein folding simulations of the
GSGS domain on the testbed with plain task parallelism
(with only isolated workers) and on the testbed with task-
and data parallelism (with clustered workers). As reported
in Figure 7, in a fixed amount of time of 60 hours, we get a
quality factor of 3.4 Å using a testbed with plain task par-
allelism. On the other hand, in Figure 8 for a testbed with
task- and data parallelism, we get a quality factor of 2.5 Å
which is an exceptionally good result that has never been
reached before for this test case with the folding method
used in this study, not even with a significant amount of ad-
ditional computational power in a homogeneous cluster of
PCs.
In summary, with the same amount of simulation time, the
platform with a carefully choice of clustered workers is able
to reach better quality factors for a protein folding simula-
tion with explicit treatment of water (accurate computation)
by shortening the turn-around time of the slower work-units
significantly. The simulations were repeated several times
and the scheduling data as well as the quality factors were
found within small variations of the data reported in this
chapter. The observations also appear to be robust, since
this tendency of the quality factors is clearly visible on sim-
ilar setups other that the testbed configurations described
here.

6. CONCLUSION

Protein folding calculations with accurate molecular dynam-
ics methods and explicit treatment of water require a large
amount of compute cycles. Accurate simulations with an
acceptably short turn-around time can not be carried out in
widely distributed systems using task parallelism alone. To
speed up the calculations and to incorporate a large number
of machines in a desktop grid, we must also consider data
parallelism in addition to task parallelism.
We conjecture that combining data and task parallelism is a
natural paradigm for protein folding or similar calculations
in computational chemistry. The folding process on a dis-
tributed system can be viewed as a combination of breadth-
first and depth-first searches through a tree of protein con-
formations. The need to simulate enough time-steps for the
relevant phenomenon to occur in protein folding requires a
linear search in depth. The randomized consideration of dif-

8

6x1000 6x933 6x600 6x500 18x400
0

100

200

300

400

500

600

700

0

5

10

15

20

25

30

nu
m

be
r

of
 w

or
k-

un
its

 r
et

ur
ne

d

nu
m

be
r

of
 w

or
k-

un
its

 a
cc

ep
te

d

work-units return work-units accepted

Testbed with task parallelism

Figure 5: Number of work-units returned (left y
axis) to the server by the different kind of work-
ers and number of work-units accepted for the im-
provement of the quality factor (right y axis) on
the testbed with plain task parallelism during a
folding simulation of 60 hours.

6x1000 6x933 6x600 6x500 6x(3x400)
0

100

200

300

400

500

600

700

0

5

10

15

20

25

30

w
or

k-
un

its
 r

et
ur

ne
d

w
or

k-
un

its
 a

cc
ep

te
d

work-units return work-units accepted

Testbed with task- and data parallelism

Figure 6: Number of work-units returned (left y
axis) to the server by the different kind of work-
ers and number of work-units accepted for the im-
provement of the quality factor (right y axis) on
the testbed with task- and data parallelism during
a folding simulation of 60 hours.

0

1

2

3

4

5

6

7

8

0 500 1000 1500 2000 2500

qu
al

ity
 fa

ct
or

 -
 R

M
S

D
 (

A
)

work-units

400 500 600 933 1000

Testbed with task parallelism

3.4

Figure 7: Plot of the quality factor along the most
successful protein folding simulation of the GSGS
domain on the testbed with plain task parallelism
with isolated workers for a 60 hours simulation.

0

1

2

3

4

5

6

7

8

0 500 1000 1500 2000 2500

qu
al

ity
 fa

ct
or

 -
 R

M
S

D
 (

A
)

work-units

3x400 500 600 933 1000

Testbed with task- and data parallelism

2.5

Figure 8: Plot of the quality factor along the most
successful protein folding simulation of the GSGS
domain on the testbed with task- and data paral-
lelism with clustered workers for a 60 hours simu-
lation.

ferent paths corresponds to the breadth of the search, which
increases the demand for computational power beyond the
linear simulation.
To cope with the demand for more power and more par-
allelism, we develop new strategies for generating and dis-
tributing computations on widely distributed systems. Our
new paradigm of computational systems with clustered work-

ers combines task- and data parallelism. With both forms
of parallelism involved a higher number of processors can
be effectively used, and this makes protein folding simula-
tions with CHARMM much more suitable for desktop grid
platforms.
We design and implement a simple simulation system based
on our notion of clustered workers. A clustered worker

9

groups multiple isolated processors of a desktop grid into
a small PC cluster. The candidates for clustering are se-
lected based on performance criteria, like clock rates and
interconnect bandwidth. We demonstrate the feasibility and
benefit of the paradigm using the commercial software envi-
ronment of the United Devices MetaProcessor on a desktop
grid provided by the student computer rooms of our techni-
cal university.
We run a small test protein on two desktop grids of 42 pro-
cessors each but with a different configuration and look at
the computational work done and the quality factor reached
after roughly 60 hours of protein folding simulation. Com-
paring a configuration with isolated workers to a configura-
tion with clustered workers, we observe that the clustered
workers have a much higher fraction of work-units that con-
tribute to the improvement of the quality factor, with ap-
proximately the same number of work-units completed. As
a result of this improvement to the search, we reach a better
quality factor for a simulation with clustered workers than
with isolated workers. For our test protein and 60 hours
with 42 machines, the quality factor jumped from 3.4 to 2.5
which is a significant improvement.
Using the commercial software environment of the UD
MetaProcessor and the widespread molecular dynamics code
of CHARMM, we show that desktop grids can be a highly
efficient computational platform for protein folding. The
experimental evaluation of our system shows further that
combining data and task parallelism leads to better results
than task parallelism alone and is therefore a highly promis-
ing approach.

7. REFERENCES

[1] B. Uk. Migration of the Molecular Dynamics Application
CHARMM to the Widely Distributed Computing Platform
of United Devices. Diploma Thesis, ETH Zurich,
Switzerland, 2002.

[2] B. Uk, M. Taufer, T. Stricker, G. Settanni, and A. Cavalli.
Implementation and characterization of protein folding on a
desktop computational grid - is charmm a suitable
candidate for the united devices metaprocessor? Technical
Report 385, ETH Zurich, Institute for Comutersystems,
October 2002.

[3] United Devices, Inc. Edge Distributed Computing with the
MetaProcessor Platform, 2001.
http://www.ud.com/products/documentation/.

[4] M. Taufer, E. Perathoner, A. Cavalli, A. Caflish, and
Stricker T. Performance Characterization of a Molecular
Dynamics Code on PC Clusters - Is there any easy
parallelism in CHARMM? In Proc. of IPDPS 2002,
IEEE/ACM International Parallel and Distributed
Processing Symposium, Fort Lauderdale, Florida, Apr 2002.

[5] P. Dinda, T. Gross, R. Karrer, B. Lowekamp, N. Miller,
P. Steenkiste, and D. Sutherland. The Architecture of the
Remos System. In Proc. of the 10th IEEE Symposium on
High-Performance Distributed Computing (HPDC-10), San
Francisco, California, Aug 2001.

[6] T. DeWitt, T. Gross, B. Lowekamp, N. Miller,
P. Steenkiste, J. Subhlok, and D. Sutherland. ReMoS: A
Resource Monitoring System for Network-Aware
Applications. Technical Report CMU-CS-97-194, Carnegie
Mellon School of Computer Science, 1997.

[7] A. Natrajan, M. Crowley, N. Wilkins-Diehr, M. Humphrey,
A. Fox, A. Grimshaw, and C. Brooks. Studying Protein
Folding on the Grid: Experiences using CHARMM on
NPACI Resources under Legion. In Proc. of the 10th IEEE
Symposium on High-Performance Distributed Computing

(HPDC-10), San Francisco, California, Aug 2001.
[8] Folding@home Project Page. http://folding.stanford.edu.
[9] B. Zagrovic, E. Sorin, and V. Pande. Beta Hairpin Folding

Simulations in Atomistic Detail Using an Implicit Solvent
Model. Journal of Molecular Biology, 317(4), 2002.

[10] B. R. Brooks, R. E. Bruccoleri, B. D. Olafson, D. J. States,
S. Swaminathan, and M. Karplus. CHARMM: A program
for macromolecular energy, minimization, and dynamics
calculations. J. Comput. Chem., 4:187–217, 1983.

[11] A.D. MacKerell Jr. and et al. All-atom empirical potential
for molecular modeling and dynamics studies of proteins. J.
Phys. Chem. B, 102:3586–3616, 1998.

[12] M.R. Shirts and V.S. Pande. Mathematical Analysis of
Coupled Parallel Simulations. Phys Rev Lett,
86(22):4983–7, May 2001.

[13] M Karplus and J.A. McCammon. Molecular Dynamics
Simulations of Biomolecules. Nature Structural Biology,
9(9):646–652, September 2002.

[14] R. Car and M. Parrinello. Unified Approach for
Molecular-dynamics and Density-functional Theory.
Physical Review Letters, 55(22):2471–2474, 1985.

[15] C. Clementi, P.A. Jennings, and J.N. Onuchic. How
native-state topology affects the folding of dihydrofolate
reductase and interleukin-1 beta. Natl Acad Sci USA,
97(11):5871–5876, May 2000.

[16] G. Settanni, A. Cattaneo, and A. Maritan. Role of
Native-state Topology in the Stabilization of Intracellular
Antibodies. Biophys J., 81(5):2935–2945, November 2001.

[17] J. Gsponer and A. Caflisch. Molecular Dynamics
Simulations of Protein Folding from the Transition State.
Proc Natl Acad Sci U S A., 99(10):6719–24, May 2002.

[18] B. Roux and T. Simonson. Biophysical Chemistry,
78(1-2):1–20, April 1999.

[19] P. Ferrara, J. Apostolakis, and Caflisch A. Evaluation of a
fast implicit solvent model for Molecular Dynamics
Simulations. Proteins, 46(1):24–33, 2002.

[20] U. Essmann, L. Perera, M.L. Berkowitz, T. Darden, H. Lee,
and L.G. Pedersen. A smooth Particle Mesh Ewald Method.
J. chem. phys., 103(19):8577–8593, November 1995.

[21] M.F. Crowley, T.A. Darden, T.E. Cheatham, and D.W.
Deerfield. Adventures in Improving the Scaling and
Accuracy of a Parallel Molecular Dynamics Program. J.
Supercomputing, 11(3):255–278, 1997.

[22] Y. S. Hwang, R. Das, J. H. Saltz, M. Hodoscek, and B. R.
Brooks. Parallelizing Molecular Dynamics Programs for
Distributed Memory Machines. IEEE: Computational
Science and Engineering, 2:18–29, 1995.

[23] E. Perathoner. Performance Driven Migration an
Optimization of a Common Molecular Dynamics Code
(CHARMM) on Different Cluster Platforms. Diploma
Thesis, ETH Zurich, Switzerland, 2001.

[24] Y. Ishikawa, H. Tezuka, A. Hori, S. Sumimoto,
T. Takahashi, F. O’Carroll, and Harada H. RWC PC
Cluster II and SCore Cluster System Software – High
Performance Linux Cluster. In Proc. of the 5th Annual
Linux Expo, pages 55–62, 1999.

[25] United Devices, Inc. MetaProcessor Platform, Version 2.1
Application Developer’s Guide, 2001.

[26] P. Ferrara and Caflisch A. Folding Simulations of a
three-stranded antiparallel β-sheet Peptide. Proc. NAtl.
Acad. Sci., 97(20):10780–10785, September 2000.

[27] P. Ferrara and Caflisch A. Native Topology or Specific
Interactions: What is More Important for Protein Folding?
J. Mol. Biol., 306:837–850, 2001.

10

