
Partition Repositories for Partition Cloning —
OS Independent Software Maintenance in Large Clusters of PCs

Felix Rauch, Christian Kurmann, and Thomas M. Stricker

Laboratory for Computer Systems

ETH - Swiss Institute of Technology

CH-8092 Zürich, Switzerland

{rauch,kurmann,tomstr}@inf.ethz.ch

Abstract

As a novel approach to software maintenance in large
clusters of PCs requiring multiple OS installations we im-
plemented partition cloning and partition repositories as
well as a set of OS independent tools for software main-
tenance using entire partitions, thus providing a clean ab-
straction of all operating system configuration state. We
identify the evolution of software installations (different re-
leases) and the customization of installed systems (differ-
ent machines) as two orthogonal axes. Using this analysis
we devise partition repositories as an efficient, incremental
storage scheme to maintain all necessary partition images
for versatile, large clusters of PCs.

We evaluate our approach with a release history of sam-
ple images used in the Patagonia multi-purpose clusters
at ETH Z̈urich including several Linux, Windows NT and
Oberon images. The study includes quantitative data that
shows the viability of the OS independent approach of work-
ing with entire partitions and investigates some relevant
tradeoffs: e.g., between difference granularity and compres-
sion block size. For a 2 GByte Windows NT partition our
repository system enables the storage of nearly a dozen gen-
erational images or several dozens of customized images
within the storage budget of twice the image size. The parti-
tions can be replicated and transferred to a large number of
PCs with our Dolly cloning tool. At present, our system is a
modular university prototype based entirely on open source
software, and most parts of it are in daily use to maintain
our CoPs and Patagonia clusters at ETH.

1 Introduction

Clusters of PCs are an emerging low cost hardware plat-
form for a variety of applications that require supercom-
puting performance in the amount of computation involved
as well as in the amount of data to be communicated be-

tween the multiple nodes of a distributed system. In our
attempt to broaden the use of PC clusters from scientific
to corporate computing we identify three types of opera-
tion for such clusters: (1) A first kind of cluster of PCs is
used for research and development in science or engineer-
ing. Those clusters are built from up to hundreds of rack-
mounted PCs, typically stored in a cooled machine room
and interconnected with a high speed system area network
(SAN). (2) A second kind of “cluster” could comprise hun-
dreds of PCs that large corporations dispatch to their em-
ployees’ desks to give them personal computing power and
access to all important information needed to do business.
Such installations are not yet widely viewed as a PC cluster
or high performance computing facility since the resources
in a fleet of PCs are not centrally managed. Future appli-
cations will certainly tie large numbers of PCs together to
deliver the power of supercomputers. Possible applications
include multimedia support for collaboration (e.g. presenta-
tion cast, virtual worlds and teleconferencing) or distributed
data mining. (3) A third kind of clusters is installed in all
training and education environments. Those classroom PCs
are used as workstations for college education and corporate
training.

Together all three kind of “clusters” have broad require-
ments for installed software, maintenance concept and us-
age modes. Normally those requirements cannot be sat-
isfied with a single operating system (OS) type or single
OS configuration. In the Patagonia multi-purpose cluster
computing project at ETH we learned that the desired flex-
ibility can be achieved with multi-boot, involving several
bootable OS installations (i.e. Windows NT, Linux and Sys-
tem Oberon) all requiring different file systems, security
settings and software maintenance modes ([4]). This pa-
per deals with the resulting software maintenance problem,
proposes a systematic view of OS configuration state and
a solution for maintenance based on cloning and partition
repositories.



1.1 The Problem of Software Maintenance

The different usage modes (production, training, experi-
mentation) and the different operating systems (Linux, NT,
Oberon) in some PC clusters greatly complicate software
maintenance. Typically software maintenance for large
cluster of PCs or a corporate fleet of PCs is done with OS
specific tools, e.g. a variety of utilities specifically written
for Windows NT. The three different OSes in our cluster run
on three different release schedules. The compatibility of
OS dependent tools with future releases would be extremely
hard to guarantee resulting in a unstable system. Further-
more we have to deal with increasingly error-prone software
and complicated installation processes that can in fact have
unexpected influence on so-called preference settings or on
other parts of software configuration state. De-installation
of software is even worse and some systems can never be
brought back to their initial state without a re-installation
from the beginning.

To overcome the drawbacks and deficiencies of highly
specialized and complex maintenance tools on the mar-
ket, we raise some fundamental questions and require that
our maintenance tools remain completely OS independent.
Such a viewpoint will mandate and enforce that there are
clean abstractions of a partition with an installed software
system in terms of bootable partition, visible partitions and
configuration state of a partition. All maintenance oper-
ations such as archive, restore, upgrade or replication of
releases and personalization or localization (i.e. single li-
cence installations or custom drivers) must be achievable
without knowledge of the file systems or the configuration
files of the system software installation. Last but not least
the method of storing and archiving software installations
should be as efficient as possible, i.e. there can be no waste
of storage space in a partition archive.

For the improved cluster maintenance mechanisms in-
vestigated in this paper we use a minimal Linux ([3]) instal-
lation on all the cluster nodes to control all setup operations.
This maintenance OS can be booted remotely for mainte-
nance tasks. While the concepts of our approach by them-
selves are remarkably simple, the viability is determined
entirely by performance aspects of software replication and
the storage efficiency of keeping a fair number of incremen-
tal OS images in our partition repository and fast replication
across the network. The optimal setup and the performance
of software replication (cloning) in large clusters of PCs has
been discussed in [5].

Partitions are distributed out of our repository by a sim-
ple tool calledDolly, comprising a small server and a very
thin client of roughly 1000 lines of code. The client permits
any chosen distribution method (full image, compressed im-
age, incremental to the data) for the bulk of data. Dolly links
the machines together in a virtual TCP multi-drop chain and

is able to distribute data to all disks in the cluster in a short
time over Classic, Fast or Gigabit Ethernet independent of
the number of nodes. This gives us full control over how
the partitions are distributed and installed on a cluster.

While the archiving of all recently installed OS images
offers the advantage of going back in time and being able
to correct errors made during an installation processes, it
could require a tremendous amount of storage space to store
the images, if done naively. Therefore we createdpartition
repositories, a technique to archive and restore software in-
stallations as partitions with a full base image and incre-
mental changes. Most commercial tools can replicate parti-
tion images by ignoring the specifics of the different OSes
or store configured OS installations incrementally using the
different file systems of the target OS, but so far we have not
encountered one that can do both with reasonable efficiency.
The partition repository proposed and implemented works
in an incremental and completely OS independent manner
and can store the different steps of a system installation ef-
ficiently. In the evaluation section we present empirical evi-
dence that this approach is fully usable and we quantify the
size of the different partition images and their incremental
changes based on the example installations encountered in
our Patagonia Cluster at ETH Z¨urich. The partition reposi-
tory maintenance system runs with Linux and does not de-
pend on any proprietary knowledge of the target operating
system or file system. It is simple and built completely from
open source software, which makes it perfectly suited for a
distribution under an open source license itself.

The rest of this paper is organized as follows: In Sec-
tion 2 we discuss related work, in Section 3 we introduce
the notions of temporal- and spacial-differences in software
maintenance. Section 4 describes the implementation de-
tails of the partition repository. In Section 5 we quantita-
tively evaluate our novel approach to software maintenance
and in Section 6 we conclude about its significance to large
clusters of PCs.

2 Related Work and Limitation of Commer-
cial Products

One of the major challenges for educational system ad-
ministrators and managers of corporate PC fleets is the
constant need to maintain consistency in their distributed
system installation, as users or students are continuously
changing configurations or adding programs. As educa-
tional clusters often comprise a large number of identical
machines, disk cloning of a master machine has been used
for years but was always used in conjuction with OS spe-
cific tools. The brute force method of disk cloning is gain-
ing more and more acceptance in the business world as a
technique for software distribution and maintenance. The
principle remaining problem with cloning maintenance is



the large amount of data required to store the different OS
installations and incremental versions, especially once mul-
tiple operating systems are used on the same set of machines
in a cluster. This problem is addressed in our paper.

A previous study in this area by Hutchinson et. al. [2]
compares the speed of physical vs. logical backups of sec-
ondary storage devices to tertiary storage. The authors use a
different terminology and misleadingly denote logical back-
ups (i.e. filewise backups) as operating system indepen-
dent, because the files could be restored on any operating
system. Our naming is different: We call physical back-
ups (i.e. blockwise backups) operating system independent,
as no knowledge of the underlying file system structure is
needed to process backup and restore operations. In contrast
to logical backups, physical backups therefore work for any
file system and any OS image installed in that partition.

The basic idea of disk or partition cloning is not new and
in fact there are already a few successful products available
such asNorton Ghost1 ([1]), ImageCast2 or DriveImage-
Pro 3. All these tools are capable of replicating a whole disk
or individual partitions and of generating compressed image
files to store the partition data. Unfortunately those com-
mercial tools are largely operating system and file system
dependent. They use knowledge of the installed operating
systems and file systems to provide additional services such
as resizing partitions, installing individual software pack-
ages and performing post-clone customizations such as e.g.,
the change of TCP/IP settings. Their operation is therefore
limited to the OS versions supported by the tool. Some of
the tools do include some functionality of blind disk copy
operation, but those are unable to work with efficient stor-
age techniques.

Other tools developed and used by system administrators
use similar techniques: The tools described in [6] and [10]
use full partition images ordump files for backup and re-
store. The approach withdump uses less storage space as
it just stores files, while the partition image superfluously
comprises unused parts of the partitions. Localizations are
performed with shell scripts or by copying modified files
from a second local hard disk drive. A more advanced ap-
proach presented in [8] uses a revision control system for
file systems (fsrcs). It stores changed files for each revision
of the system installation in a file tree. This approach also
saves disk space but requires knowledge about the underly-
ing file system to access the files.

To the best of our knowledge our approach with cloning
installations out of an incremental partition repository re-
mains the only solution that istruly operating system in-
dependent by working with raw disk partition installations.

1Norton Ghostc©, Symantec,http://www.symantec.com/
2ImageCastc©, Innovative Software Ltd.,

http://www.innovativesoftware.com/
3DriveImageProc©, PowerQuest,http://www.powerquest.com/

Images are stored in a block repository, where compressed
raw disk blocks are administered. Modern operating sys-
tems can be setup for automatic installation and customiza-
tion, e.g. network settings can be initialized by DHCP based
on the unique address in the Ethernet adapter. Further post
cloning configurations (as e.g. setting a new SID for Win-
dows NT or individual license keys for application soft-
ware) can be performed by scripts at startups.

2.1 Partition Cloning for Efficient Distribution

This section contains the most important details about
the cloning system that is closely related to our experi-
mental investigation of partition repositories. An analytic
model predicting cloning performance as well as perfor-
mance measurements on the implemented system is de-
scribed in [5].

First we need to define the terminology more precisely:
The process of storing the contents of a disk or partition
to an image file is called abackup. The action in reverse,
writing an image to a partition is called arestore. In our
definition, a restore includes the installation on a previously
empty, unused or broken partition, as well as the upgrade of
an image on an existing installation. The process of back-
ing up an image from one machine and then (later or at
the same time) restoring to one or many other machines is
calledcloning.

A somewhat simplistic approach relies on a standard net-
worked file system (e.g. NFS) to backup a whole disk or
partition4. The machine with the partition to be backed up
simply copies its content to an NFS file system exported
from a server holding the collection of images. The image
can be compressed on the client side to save some storage
space. For a restore, all the clients involved will read the
(compressed) partition-image simultaneously over the net-
work from the NFS server, possibly uncompress it and write
the data to the local disk. This approach is simple, highly ro-
bust and most operating systems include all software func-
tions needed. The method has the disadvantages that it does
not scale beyond very few clients and that it does not have
much room for improvements as each image is stored in one
file and served from 1 server ton clients.

In a more sophisticated approach, the backup process can
be done exactly as in the first approach or alternatively the
master machine to be cloned can also be used directly as
server to the clients. The second step is different: The dis-
tribution of the partition image for the restore operation is
accomplished using a virtual TCP multi-drop chain with the
dedicated client. The advantages of this approach are scal-
ability and flexibility: The overall system performance is

4The termsdiskandpartition can be used interchangeably in this con-
text. While this is not strictly technically correct, they are handled in ex-
actly the same way in our system. Therefore we will use the termpartition
from now on.



limited solely by the performance of a client, not the server,
and therefore scales perfectly even for a large number of
clients.

In the basicDolly partition cloning framework the par-
titions are best transfered as a sequence of uncompressed
consecutive blocks. In the next section, we argue that it is
worthwhile to change this to a sequence of (not necessarily
consecutive) blocks and a paired array of disk block num-
bers and image blocks. With some more advanced schemes,
we manage to transfer only unique blocks, saving much
storage space and work in incremental installations. During
the search for the best data representation we discovered
that there is a systematic structure to the various partition
images that are used to maintain a cluster installation. The
next section analyzes this structure.

3 The Characteristics of OS Installations and
Maintenance

Software installations arenot done in one single, atomic
step without ever changing them again. The installation and
maintenance of an OS remains an evolutionary and rather
incremental process. Because of the changing nature and
complexity of todays OS installations, it would be desir-
able to have some sort of version control for the incremental
steps as this is the case with software development. For soft-
ware development it is a common practice that developers
check out a stable part of the software being developed from
a repository, improve or change it and check it back into the
repository. If at a later time a bug is found, all old versions
are still available, as every single version can be fully re-
trieved from the repository as a snapshot. Since there can
be a potentially large number of incremental steps in the
lifetime of a software development project, it is not efficient
to save all full revisions of the software in the repository.
The repository therefore storesonly the differencesbetween
each version. As we will show, the same can be done with
software installations in hard disk partitions. In Figure 1 we
depict the typical structural relationships of an OS partition
image. We explain that a cluster software installation expe-
riences changes (due to version upgrades) along a temporal
axis during its lifetime as well as changes along a spacial
axis when replicated into a large number of PCs in a cluster
and adapted to different clients and their hardware.

3.1 Installations and Upgrades: Temporal Differ-
ences

A common first step in OS installation and maintenance
is to install the basic OS including the kernel and only the
most common programs needed to run the system. In fur-
ther steps more patches, service packs and additional soft-
ware packages are installed. Later in the life cycle new

patches need to be applied or users demand the installation
of new or the upgrading of existing software packages. This
process is error-prone: Software-parts might be installed in
an incorrect order or might not fit together, or a configura-
tion option might be badly chosen. For such cases it is ex-
tremely helpful if single installation steps can be completely
reversed by reverting back to the last working version of
the installation without having to start from the beginning
again.

Sometimes software is only temporarily installed on a
cluster, e.g. for special classes, courses, experiments or
tests, and removed soon after installation. Most packages
provide de-installing options, but often these are not capa-
ble of inverting every change done to the system during the
installation of the package. These small remaining changes
result in a so-calledsoftware rotwhich makes the system as
a whole unstable and increasingly difficult to maintain.

The OS installation is therefore changing (and hopefully
improving in quality and security) all the time, but only to
the price of high complexity.

Addition of new
software packages

Initial OS
installation

patch
Service pack /

Temporary
installation

Localized
replication

Time

Space

Localized
replicationreplication

Personalized

Figure 1. Diagram showing the evolutionary
steps of a typical software installation. As
software is added, changed or patched, the
installation evolves over time (downwards).
Localized and personalized replications of
the installation on different machines are sep-
arated horizontally. An OS installation and
maintenance tool should capture changes in
both directions.

3.2 Replication and Local Configuration: Spacial
Differences

Some software packages also require local changes or
adaptions on the machines, such as license keys for com-
mercial software or changes to the local configuration files
or the Microsoft Registry Database. These are only small
changes between the installations, but it might nevertheless
be worthwhile to store those spacial differences: When a



hard disk fails, the exact images for the partitions of that
machine can be restored and no further configuration is re-
quired.

Since the original OS image and its copies on the disks
are bit-wise identical, some localizing configuration steps
must be taken to make them operational. In most cases a
freshly cloned OS cannot be brought to life with a simple
booting process but requires some customization. We use
a DHCP server on the same Ethernet segment to assign IP
addresses and machine names based on the unique Ethernet
MAC address built into the primary network interface of
each PC. Additional scripts are performed at boot time to
initialize further settings such as setting a unique SID, log-
ging onto a domain controller for Windows NT or selecting
the correct driver for the graphics card installed.

Another possibility for machine specific changes would
be to usescripted installs. With this approach, a script does
the local configurations and software installations automat-
ically after the initial OS is installed. Scripted installs have
some disadvantages however: (1) They are OS dependent
as the OS must support scripting languages and be config-
urable by scripts. (2) They are slow since the file system
must be used. ([2] describes how the direct physical access
of the disk is much faster than using the logical file sys-
tem, while [5] shows that fast network-based installations
on clusters are in fact possible with raw disk accesses). (3)
The removal of software packages with a script is not as
clean as restoring exactly the same installation. Most OS
manufacturers recommend scripted installs from an original
CD ROM distribution and force the user to become OS de-
pendent. Our techniques are truly OS independent and will
therefore work for future releases of Linux and Windows.
Once some form of auto-configuration at startup time can be
worked out a replication to hundreds of PCs is easily possi-
ble. However, auto-configuration and fully floating licenses
are not always possible. With future operating systems it
is well conceivable that a fully automatic configuration can
still not be worked out and manual intervention becomes
necessary. Therefore the partition repository technique al-
lows the storage of fully localized images for each machine,
and due to their efficient management of differences, can
do so without exceeding the storage budget. Since partition
repositories are oblivious to the file system it does not mat-
ter if the application stores its customized license key in a
file, in the executable or in an entry of the central Microsoft
Registry Database. The disk block based incremental imag-
ing techniques will correctly apply any changes upon a re-
store.

Abstraction of the installation state and a strict OS in-
dependence seems to be the only viable approach to this
maintenance problem since it is very hard to obtain proper
documentation about the configuration state of OSes and
application programs.

4 Partition Repositories for Incremental
Maintenance

The advantages of working with partitions in an OS in-
dependent way have been outlined in the previous sections.
Archiving localized and fully configured images and entire
maintenance histories of a large cluster of PCs as raw image
files requires a lot of storage space. Therefore most com-
mercial tools revert to incremental storage in a file system
or other dependent schemes for image maintenances.

We implemented a much different scheme for the stor-
age of all information required to do software installation in
a cluster. The implementation required many tradeoffs and
design decisions, and therefore we need to quantify the stor-
age requirement and the savings of optimized storage tech-
niques such as the deletion of zeroed blocks, image com-
pression and an incremental storage method calledpartition
repositorywith a few typical example installations.

4.1 Implementation of Partition Repositories

Partition repositories work with partition images exclu-
sively (no knowledge of the different file systems is desired
or required) and therefore the method is completely OS in-
dependent. Our software maintenance system will work
with any future OS version and any file system that is or
will be used on our cluster of PCs. The system works at
partition level and at disk device level. At disk device level
there are no restrictions on the data layout of a disk and
even non-standard formats, such as Oracle data disks, can
be replicated. At the partition level the system works with
the standard partitioning system of the cluster platform (i.e.
the partition structure of the Intel, Sun or PowerPC plat-
form). Our system relies on the partition access facilities
provided by the Linux maintenance OS.

4.1.1 Optimized Storage of Full Partition Images

The most simple and obvious approach to manage differ-
ent versions of installations is to store the partition image of
each new or upgraded OS installation in a file on a server.
To save valuable disk space, the images can be compressed
with a generic data compression algorithm such as Huffman
or Lempel Ziv encoding — our tool usesGNU zip. Accord-
ing to our experience, partition images of moderately filled
partitions can be compressed to roughly 50% of their orig-
inal size, depending on the kind of data installed and the
amount of free space in the partition. We occasionally use
various file system dependent tools to “wipe” free space or
to fill empty blocks with zeros after a complex installation.
Such tools help to achieve better compression. As there is
exactly one image-file per installation, archives and restores
are simple to manage. On the other hand, a lot of disk space



is wasted as most of the information in two incremental in-
stallations is identical.

4.1.2 Storing Partition Increments (difference, block-
wise)

A better and more advanced approach to capture at least
some of the similarities between two software installation
images is to store the full base image in a file for the first
installation. Subsequent installations are then generated by
comparing the updated partition on a block-by-block basis.
Only blocks which actually differ from previous reference
images are stored in a so calleddiff-file. With this approach,
the unchanged blocks are not stored twice. Small changes
in an installation can thus be archived quite efficiently.

The generation of the diff-files is simple: The old image
file and the upgraded partition are both read sequentially
and each block is compared with the block at the same po-
sition of the other input stream. When two blocks differ,
the block is written to the diff-file. When the two blocks
are identical, only the number of the block in the original
image-file is written to the diff-file, thus saving the space of
an entire block.

There are some cases that are not handled very well by
this simple method: For some operating systems, the re-
moval and re-installation (probably with a partial update)
of software-packages is a common operation. In this case,
the program itself, some configuration files as well as shared
libraries, are frequently moved to other locations in the par-
tition, but not necessarily changed. For some file systems it
is a common operation to defragment the stored files, which
results primarily in moving data blocks around. Only some
block and directory structures on the disk need actually to
be changed. Another case are modern log-structured file
systems (see e.g. [7, 9]) in which even unchanged blocks
are frequently moved around by the cleaner to regain space
in new empty segments. These changes in location rather
than content are not detected properly by the block-by-
block compare.

4.1.3 Storage of a Partition Image in a Block Reposi-
tory

Our most sophisticated solution, the partition block reposi-
tories, overcomes the limitation of the two previous solu-
tions and is fully enabled to detect the relocation of un-
changed data during the difference calculation. It works
by comparing all blocks of the base image and incremen-
tal changes with each other and by storing only the unique
blocks in ablock repository. The result is that blocks are
not stored again in the block repository if they were just
moved around during an upgrade or defragmenting process
by a system administrator or the cleaning process of a log-
structured file system. An new differential image only con-

tains pointers to the blocks to be found in the repository.
Changed blocks not yet in the repository are stored and a
pointer to them is inserted in the corresponding archive file.
This approach has the additional advantage that identical
blocks in the same image (such as zeroed blocks or com-
mon identical font files, libraries, graphics or dictionaries
found in may software packages) will also be stored only
once, resulting in improved storage efficiency.

The downside of this most advanced approach of stor-
ing software installations is that comparison of all blocks
is an expensive operation, as each block of an image has
to be compared with each block of the other image. How-
ever, there are some possibilities to speed up the process.
Instead of cross-comparing all the blocks, we speed up the
process by generating hash tables over the contents of the
blocks at runtime when comparing compressed images. We
then compare the hash-values in memory only. For collid-
ing hash values, the blocks have to be compared in a second
comparison pass, but the comparison of images is neverthe-
less much faster than it would be with a naive approach.
The comparison of two uncompressed Windows NT parti-
tions of 2 GByte each takes about 7 minutes on a high end
PC and requires a few hundred MB of memory. The same
comparison with compressed images took less than 9 min-
utes.

This operation is done only once for each archived instal-
lation step and is not required for the more frequent restores.
Furthermore, it is still much smaller compared to the time
it usually takes to apply and test a system installation or up-
grade, and it can easily be done as a background process
during the night, which makes it a reasonable effort.

5 Experimental Evaluation

For evaluating the different storage schemes we study
a few partition image series of real OS installations on our
Patagonia cluster of PCs. The images studied are taken from
our server which runs the software maintenance system as
described in Section 4.1.1. Figure 2 shows the evolutionary
steps of the installations and the replications to multiple PCs
in our cluster.

Table 1 lists the relevant storage requirements for a com-
parison of the different methods of storage and for an es-
timate of storage requirements to maintain all system soft-
ware in a large and diverse cluster of PCs or a fleet of cor-
porate PCs.

In Table 1 the different storage methods as described in
Section 4 are compared. For some installations we have
a base installation and one incremental version available;
other tests are done with two increments. With the block-
wise diff approach, the base image size is equal to the parti-
tion size of the installation, while the blockwise repository
base is slightly smaller due to the detection of identical disk



Upgrade

Boot part. Maint. OS

Upgrade

Linux Localization
for diff. hardware

Oberon

Upgrade Localization
for diff. room

WinNT 1

Small upgrade

Localization
for diff. clusters

Service pack inst.
WinNT 2

Space
Time

Figure 2. Evolutionary steps of the installations in Table 1 showing the temporal and spacial changes.

Installation Full images Blockwise diff Blockwise repository
Base Increment Total Base Increment Total Base Increment Total

Boot partition 16 16 32 16 (18kB) 16 14 (18kB) 14
Maintenance OS 205 205 410 205 0.3 205 195 0.3 195
Linux 945 945 1890 945 12 957 844 6 850
Oberon 106 106 + 106 318 106 25 + 22 153 28 10 + 2 40
WinNT 1 2048 2048 + 2048 6144 2048 35 + 430 2516 1893 22 + 280 2195
WinNT 2 2048 2048 4096 2048 29 2077 1804 17 1821

Table 1. Comparison of the three presented approaches of storing incremental installations for dif-
ferent production images in use on the Patagonia cluster at ETH Z ürich. All numbers are in MByte
except where otherwise noted.

blocks. The listed diffs are calculated between the first ver-
sion and the second version of the installation or from the
second version to the third one respectively. The listed in-
stallations have the following characteristics: The first two
installations are a very small boot partition, where only a
minor change was applied, and a maintenance OS (Linux in
our case) which was slightly upgraded. The series of two
subsequent Linux installations differ in a few configuration
and kernel changes for slightly different hardware (amount
of memory, processors, graphic and network cards), result-
ing in a few changed and a few relocated blocks. Oberon
uses only a small portion of its partition which results in a
quite small partition repository. The second upgrade is the
installation of nearly the same system for slightly different
hardware, resulting in mostly the same information at dif-
ferent locations on the disk. The fifth example is a series
of Windows NT installations starting with a baseline Win-
dows NT installation followed by service pack installs. The
second Windows NT installation is for two nearly identi-
cal PC clusters where only a few default settings (such as
printers and boot scripts) have been changed.

In Figure 3 the different storage techniques for Win-
dows NT and the Linux maintenance software installation
series is examined in more detail. The above methods are
combined with compression of the base archive as well as
the increments. The incremental archive approaches show
a great potential in saving disk space without knowledge of
the underlying file system.

OS Part. Repository size
Installation Size Orig. img. Incr. after inst.

Windows NT 2048 1791 203
Linux 2048 1535 209

Table 2. Storage requirements in the repos-
itory for installing the same office package
StarOffice 5.1on both Windows NT and Linux.
The numbers are in MByte.

We then compare the storage requirements of our disk
block repository when installing the same software pack-
age on different OSes with different file systems. The soft-
ware package used for this experiment is Sun Microsys-
tems’ StarOffice 5.1 which is available for both Microsoft
Windows NT and Linux. The results shown in Table 2 and
Figure 4 show that the diskblock repository technique works
comparably well on both OSes and file systems. According
to the installation documentation of the software, the pack-
age requires 110–140 MByte of permanent disk space and
around an additional 20 MByte during the installation. The
numbers in the table are higher because our tool also cap-
tures changed entries in the directory and block handling
structures of the file system.

Another common operation in software installation
maintenance is upgrading or patching the base OS or ker-



Full Images Blockwise
Diffs

Block
Repositories

Compressed
Images

Compressed
Diffs

Compressed
Repository

0

400

800

1200

1600

2000

2400

S
iz

e 
[M

B
yt

es
]

Method of storage

Base Install Increment 1 Increment 2

Windows NT

Full Images Blockwise
Diffs

Block
Repositories

Compressed
Images

Compressed
Diffs

Compressed
Repository

0

50

100

150

200

250

S
iz

e 
[M

B
yt

es
]

Method of storage

Base Install Increment

Linux maintenance OS

Figure 3. Storage required for a successive
Windows NT and Linux update path. Three
different generations of installation steps
from a base install to a fully updated image
are examined for Windows NT and two gen-
erations for the Linux maintenance OS re-
spectively. The three presented methods of
archival are shown, without compression ap-
plied in the left three cases and combined
with compression in the right three. The
blocksize used for the diffs and the reposi-
tory is 1 KB.

nel respectively. We thus measure typical patch operations
for Windows NT and Linux. On Windows NT we upgrade
from Service Pack 4 to Service Pack 5, while on Linux we
patch the kernel source tree on the machine from 2.2.14 to
2.2.15, recompile and install the kernel. These two opera-
tions are not directly comparable but show typical software
maintenance tasks for both OSes used in our clusters. The
results are depicted in Table 3 and Figure 4.

In our next experiment we compare the installations on
two identical machines which have been localized, again
both for Windows NT and Linux. The Windows NT system
was cloned, self-configured during the first bootup, and re-

Original Repository Increase after
StarOffice
Installation

Increase after
Service Patch/
Kernel Upgrade

0

400

800

1200

1600

2000

S
iz

e 
[M

B
yt

es
]

Windows NT Linux

Figure 4. Storage requirements in the repos-
itory for an incremental software update, i.e.
installing the same new office package StarOf-
fice 5.1 and for upgrading or patching the
base OS or kernel respectively on both Win-
dows NT and Linux. The original images are
2 GB large.

Repository size
OS Part. Incr. after patch
Installation Size Orig. img. Abs. Perc.

Windows NT 2048 1791 106 5.9 %
Linux 2048 1535 50 3.2 %

Table 3. Storage requirements in the reposi-
tory for upgrading or patching the base OS or
kernel respectively. The numbers are again
in MByte.

booted eventually as the new localized machine. For Linux
there is no need for such a configuration step in our instal-
lation, as completely identical images can be used (we use
DHCP for setting the IP-numbers and hostnames, we do not
have software with local licenses and we use scripts to de-
tect and select the right graphic card driver during bootup).
The Linux numbers are derived by comparing two identical
machines after they were only in light use for a few weeks.
The results are shown in Table 4. The table’s last column
shows the number of localized partition images that can be
inserted into the repository before the repository is twice as
big as the uncompressed partition. This means that we can
store 75 localized Windows NT installations in a repository
that has only twice the size of the partition.

A shortcoming of the blockwise repository storage tech-
nique is that the fragmentation into blocks adversely af-



Repository size
OS Partition Increase after localization # of inst.
Installation Size Original Image Absolute Relative to double

Windows NT 2048 1791 27 1.5 % 75
Linux 2048 1535 9 0.5 % 227

Table 4. Storage requirements in the disk block repository for localized replications. The numbers
are in MB except in the last column, which lists the number of localized replications that can be
inserted in the repository before its size is twice as big as the uncompressed partition.

● ● ● ● ● ● ●

■
■

■ ■ ■ ■ ■

512 1 K 2 K 4 K 8 K 16 K 24 K
50

100

150

200

250

300

0

10

20

30

40

50

60

70

80

90

S
iz

e 
of

 r
ep

os
ito

ry
/im

ag
e 

[M
B

yt
e]

C
om

pr
es

si
on

 r
at

io
 [%

 o
f o

rig
in

al
 s

iz
e]

Block Size [Byte]

●
Raw Image Size
(200MB-192MB) ■

Compressed Size
(113MB to 66 MB)

Compressed ratio
(59% to 30%)

● ●
●

● ●
● ●

■

■
■ ■ ■ ■ ■

512 1 K 2 K 4 K 8 K 16 K 24 K
10

15

20

25

30

0

10

20

30

40

50

60

70

80

90

S
iz

e 
of

 r
ep

os
ito

ry
/im

ag
e 

[M
B

yt
e]

C
om

pr
es

si
on

 r
at

io
 [%

 o
f o

rig
in

al
 s

iz
e]

Block Size [Byte]

●
Diff Image Size
(21MB-25MB) ■

Compressed Size
(18MB to 12MB)

Compressed ratio
(86% to 49%)

Figure 5. Comparison of disk space require-
ments depending on different block sizes for
the comparison (diff) and compression algo-
rithm. The 205 MByte Linux maintenance par-
tition is inserted alone in the upper figure,
while in the lower figure, the first update is
also inserted. In the upper case the absolute
sizes of the uncompressed and compressed
repositories are compared and the compres-
sion ratio is shown. The lower figure shows
the same characteristics for an incremental
partition image of 25 MByte as an uncom-
pressed and compressed repository after in-
serting the updated partition.

fects the compression rate since compression is now block-
wise (instead of the whole image at once) so that individual
blocks can later be accessed directly without first uncom-
pressing the whole repository-file. We examined the rate
in more detail by comparing the raw size as well as the
increase (diff size) of the uncompressed and compressed
repository, after inserting a base installation as well as an
updated partition. We store the 205 MByte large main-
tenance Linux base partition as well as its 25 MByte in-
cremental updated image in the repository and use varying
block sizes for the gzip compression algorithm to compare
(diff) and compress the blocks. The results in Figure 5 show
that for increasing block sizes the uncompressed repository
size increases due to the coarser granularity of difference
detection because, for small changes, a larger block needs
to be inserted into the repository. The compression algo-
rithm, on the other hand, works better for larger block sizes,
thereby improving the compression factor. The results indi-
cate that one might reduce the disk space requirements con-
siderably by using 16 KByte blocks and by optimally com-
bining blockwise repositories to whole image compression
techniques. 16 KByte seems to be optimal for the incre-
mental image, since the compression algorithm shows little
additional gains beyond 16 KByte and is offset by the loss
in the accuracy of difference processing.

6 Conclusions

In our study we analyzed the problem of software main-
tenance in large clusters of PCs. We think that our work ap-
plies to traditional clusters for scientific computing, novel
clusters for multimedial collaboration or even computers in
a corporate fleet of PCs. Versatility in the use of clusters and
the rapid release schedule of different operating systems in
the commodity software market require a cluster mainte-
nance tool to use simple and clean abstractions of the state
comprised of system installation.

Therefore, we propose to build a software maintenance
system for clusters based on the storage and the distribu-
tion of entire partition images. The system thus does not
depend on any operating system or file system. In previous
work we proposed to use our cloning toolDolly for high



speed partition cloning and data distribution across the high
speed network of large clusters of PCs. In this paper we
investigated blockwise partition repositories to address the
storage problems associated with the partition maintenance
approach in large clusters of PCs. We clearly identify two
reasons for a replicated storage of partitions: the temporal
evolution of an OS installation following the release sched-
ule for updates and the installations of additional middle-
ware or application packages, the individual configuration
of images for heterogeneous hardware environment or for
network or license key configurations.

The implementation of a block-based difference scheme
demonstrates that we can reduce the storage needs for keep-
ing a full software history based on partition images drasti-
cally by storing increments of 1% up to 20% of the space
that would be required to store a full partition. A compar-
ison between a release history of Windows NT and Linux
partition on our dual boot cluster does not reveal any fun-
damental difference between the two most popular cluster
operating systems and shows that our partition repositories
work for both operating systems in the same way.

We also demonstrate that storing fully customized im-
ages for the different nodes in a large cluster is relatively
cheap. Since our Linux system offers complete network au-
toconfiguration and none of the Linux Software packages
relies on individual license keys the capability for localized
replication is not as important for Linux as it is for Win-
dows NT. For Windows NT our method can store up to 75
incremental customizations in the space required by a typ-
ical 2 GB operating system installation. We hope that all
future operating systems will eventually migrate to full net-
worked autoconfiguration, but we still appreciate a mainte-
nance system that offers a fallback solution. In our evalu-
ation we carefully consider the interaction between differ-
ence processing that works best at a fine granularity and
data compression that works best at large granularity. It ap-
pears that the best block size for block partition repositories
would be around 16 KByte.

Our software maintenance system based on high speed
partition cloning across the network and highly efficient
storage in partition repositories is at the stage of a highly
modular university prototype, and some parts of the system
are already in daily use by our system administrators. It is
based on simple ideas, and all software involved is available
under open source.

References

[1] Symantec Corporation. Norton Ghost: Disk Cloning
Technology for the Overburdened IS Professional, 1998.
http://www.symantec.com/sabu/ghost.

[2] Norman C. Hutchinson, Stephen Manley, Mike Federwisch,
Guy Harris, Dave Hitz, Steven Kleiman, and Sean O Malley.

Logical vs. Physical File System Backup. InProceedings
of the 3rd Symposium on Operating Systems Design and Im-
plementation, New Orleans, Louisiana, pages 239–249. The
USENIX Association, February 1999.

[3] Linux Online. Linux online information. WWW site, 1999.
http://www.linux.org/.

[4] Felix Rauch, Christian Kurmann, Blanca Maria M¨uller-
Lagunez, and Thomas M. Stricker. Patagonia — A Dual
Use Cluster of PCs for Computation and Education. In2.
Workshop Cluster Computing, Karlsruhe, March 1999.

[5] Felix Rauch, Christian Kurmann, and Thomas M. Stricker.
Partition Cast — Modelling and Optimizing the Distribution
of Large Data Sets on PC Clusters. In Arndt Bode, Thomas
Ludwig, Wolfgang Karl, and Roland Wism¨uller, editors,
Lecture Notes in Computer Science 1900, Euro-Par 2000
Parallel Processing, 6th International Euro-Par Conference
Munich, Munich, Germany, August 2000. Springer. Also
available as Technical Report 343, Department of Computer
Science, ETH Z¨urich,http://www.inf.ethz.ch/ .

[6] Paul Riddle. Automated Upgrades in a Lab Environment.
In Proceedings of the Eighth Systems Administration Con-
ference: (LISA VIII), pages 33–36. USENIX Association,
September 1994.

[7] Mendel Rosenblum and John K. Ousterhout. The Design
and Implementation of a Log-Structured File System.ACM
SIGOPS Operating Systems Review, 25(5):1–15, 1991.

[8] Gottfried Rudorfer. Managing PC Operating Systems with
a Revision Control System. InProceedings of the Eleventh
Systems Administration Conference (LISA ’97), pages 79–
84. USENIX Association, October 1997.

[9] Margo Seltzer, Keith Bostic, Marshall Kirk McKusick, and
Carl Staelin. An Implementation of a Log-Structured File
System for UNIX. In Proceedings of the Winter 1993
USENIX Conference, pages 307–326. The USENIX Asso-
ciation, 1993.

[10] Michael E. Shaddock, Michael C. Mitchell, and Helen E.
Harrison. How to Upgrade 1500 Workstations on Saturday,
and Still Have Time to Mow the Yard on Sunday. InProceed-
ings of the Ninth Systems Administration Conference: (LISA
IX), pages 59–65. USENIX Association, September 1995.


