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Abstract

Many large applications require distributed computing for
the sake of better performance and software systems that fa-
cilitate the development of such applications have attracted
a great deal of attention. Modeling the application as dis-
tributed objects or components promises the benefits of better
abstractions and increased software reuse.

Using Distributed Object Middleware (DOM) like CORBA
looks promising, but most often one cannot afford its notori-
ous inefficiency. We address the bandwidth bottleneck by ex-
tending a highly efficient zero-copy communication architec-
ture from the operating system through the middleware layers
all the way up to the application.

In contrast to previous attempts on improving efficiency in
CORBA we preserve the advantages of object oriented ab-
straction for the software design process and propose an ef-
ficient CORBA system that can handle bulk data transfers
within the Object Request Broker (ORB). Our prototype uses
a clean separation of control- and data transfers within the
ORB and for the ORB-to-ORB communication and manages
to get rid of all inefficient buffering for certain types while still
preserving the standard Internet InterORB Protocol (IIOP).
It achieves the full performance that is only available with a
strict zero-copy implementation across all layers between the
operating system and the application.

Keywords: Distributed Object Middleware (DOM), Zero-
Copy Communication, Communication Efficiency

1 Introduction

A more and more favorable price performance ratio of com-
modity computing systems and the availability of high-speed
networks are responsible for the popularity and the rapid de-
velopment of high performance distributed computing. Dis-
tributed systems provide concurrency in execution and along
with it an improvement in parallelism and performance in ad-
dition to the benefits of physical distribution, enhanced re-
liability and scalability. However the positive evolution of
commodity hardware comes at a well known cost. The size
and complexity of application software in distributed systems
is increasing disproportionally. Therfore object oriented soft-
ware design has attracted a great deal of attention and many

middleware systems solving the most common problems have
been developed. Distributed computing on the basis of dis-
tributed objects and components could eventually combine
the advantages of higher performance with those of object
oriented technology.

A lot of previous work has dealt exclusively with new
paradigms, new functionality and establishing standard soft-
ware components. Unfortunately the resulting systems were
all crippled by mediocre communication performance that
destroyed many benefits for high performance applications.
In this paper we address the question of software efficiency
and optimal performance in middleware for distributed ob-
ject computing with a focus on the per-byte overheads for
bulk data transfers. We chose to look into this question by
the examination and the extension of a CORBA compliant
software structure that relies on a well known public domain
ORB. We will establish the concept that zero-copy implemen-
tation techniques are the key technology that can be used to
improve the bandwidth for inter-ORB communication.

1.1 A Zero Copy Regime for Layered Software
Systems

Complex layered systems, and even the most complex mono-
lithic systems, can always be broken down into multiple lev-
els of abstractions. The decomposition of complex mono-
lithic systems into subsystems leads to middleware layers and
eases the development by dividing the complex application
into manageable parts.

In the typical layered software system, the problem of
transferring data is partitioned into multiple smaller prob-
lems. This causes several characteristic problems in an ef-
ficient implementation, since the individual layers have no
knowledge about the overall picture and thus may make bad
decisions about how to buffer data. This is typically a con-
tributing factor to the severely degraded and unpredictable
performance of such systems [3, 7].

Figure 1 shows the control- and data path of a typical lay-
ered application with application logic, middleware for distri-
bution, its communication system software and the operating
system for resource management on each compute node or
part of the system.
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Figure 1. Control path and data path of a layered application using distributed object
middleware including the typical operating system environment.

The control path in Figure 1 shows that the application
communicates all its data exclusively through a middleware
package like MPI [4] or CORBA [13]. The system is heavily
layered, since the middleware uses a communication service
of the operating system (e.g. BSD sockets) to pass the data to
the underlying operating system. The OS then adds transport
and network protocol headers for TCP/IP and Ethernet proto-
col and sends the data via the driver to the network interface
hardware that takes care of the data-link and physical layer.
The heavily layered control path typically introduces signifi-
cant per-packet overheads and latency. Such overheads were
recognized and removed in previous work [18]. In extension
to these previous papers our study focuses on the cost of bulk
transfers, since high performance distributed computing often
need large amounts of data to be moved within the distributed
system.

In addition to the per-packet cost some per-byte costs incur
when data is moved within the parts of a distributed system.
The typical data path in Figure 1 shows that this path is often
optimized to fewer layers than the control path, but we see
that in most cases several different layers and steps remain.
Typically the interfaces between those steps and layers cause
copies of the data. These copies introduce the main overheads
for large data transfers. For the optimization of those data
transfers we need to apply a strict zero-copy principle to all
interfaces between the involved layers.

The copies are removed as follows. A first copy is intro-
duced quite often by the drivers of the network interface -
at least for Gigabit Ethernet using commodity network inter-
faces. The fragmentation of large blocks into small packets
required the insertion of header and trailer information be-
fore packets can be sent and the removal thereof after packets
have been received. For a simple commodity Gigabit Ether-
net this copy can be removed with a probabilistic implemen-
tation technique, called speculative defragmentation [10]. In
our system we reach an almost zero-copy implementation that
supports the standard socket API. The most widely known
copy secondly occurs at the interface between the application

and the operating system. The data has to be copied from the
virtual user memory space into a system page pool. This copy
can be removed by a variety of rather well known techniques
as stated in Figure 1. What still remains in object oriented
distributed computing is a copy due to the layering of appli-
cation and middleware in user space and the introduction of
further protocols like the Internet InterORB Protocol (IIOP).
This copy is distinct and in addition to the copy between the
middleware and operating system.

This paper introduces an implementation technique to re-
move all copies within the ORB and to optimize the CORBA
middleware for a strict zero-copy regime. Following this prin-
ciple any piece of data has to be touched only once on the
way from the application down to the wires of the intercon-
nect. Unlike many previous attempts that just move copies
between software layers or merge a number of copies into a
single one our understanding of a zero-copy architecture re-
ally means zero data copies through all the involved data path
layers. That means that no copy may occur in the commu-
nication system including the hardware drivers, the network
and transport protocols as well as by crossing the kernel-user
boundary and the involving of the socket interface and the
middleware.

1.2 CORBA and High Performance Com-
puting

Parallel programs based on message passing middleware and
classical distributed systems based on CORBA often use the
same distributed hardware platform - namely interconnected
commodity PCs cooperating in a single application to solve
a large problem. Still parallel programming systems (e.g.
MPI) have evolved independently from object-based and dis-
tributed object programming systems (e.g. CORBA).

This different avenues of evolution prevent parallel pro-
gramming from taking advantage of the large investment in
distributed object software technologies and prevents dis-
tributed programming from reaching the efficiency of parallel
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Figure 2. CORBA versus MPI. While the effi-
ciency of CORBA implementations can be im-
proved, the functionality of MPI is fixed by the
specification.

programs. It also makes it difficult to add parallel parts to dis-
tributed CORBA applications or distributed client/server or
peer-to-peer parts in parallel MPI applications.

Several independent projects have demonstrated CORBA’s
usefulness for parallel programming [12, 21], generally by
extending the interactions available and supporting some
level of data partitioning [15, 8]. This has typically resulted
in non-standard ORB extensions that are neither portable
nor interoperable. But as the CORBA specification is not
static, these project triggered the specification of Data Par-
allel CORBA [14].

On the other end MPI programs are mostly efficient when it
comes to data transfers, but it is not easily possible to extend
MPI towards distributed objects and to implement more func-
tionality that eases application development without changing
and enhancing the MPI specification. The tradeoffs and dif-
ferent approaches are depicted in Figure 2.

Based on our experience we think that we must start with
the rich and well standardized functionality of CORBA and
add enough efficiency to the ORB implementation to enable
high bandwidth communication to the point that it can be
used in high performance distributed computing.

As a communication middleware package an ORB helps
the application developer to achieve flexibility and portabil-
ity by taking over many common management tasks in a
distributed system e.g. managing object location, parameter
marshaling and object activation. CORBA is an improvement
over conventional procedural RPC since it works cross plat-
form, cross language and supports object-oriented features
(such as encapsulation, interface inheritance, parameterized
types, exception handling) — of course all at the cost of sig-
nificant additional overheads.

To study the performance of CORBA and implement our
optimizations we used one of the large and sophisticated
open source projects around. MICO [16] provides a quite
popular freely available implementation of the CORBA stan-
dard that is widely used. As a major milestone, MICO has
been branded as CORBA compliant by the OpenGroup, thus
demonstrating that open source can indeed produce industrial
strength software.

2 Design Issues and Related Work

CORBA has proven its worth in low speed networks that do
not demand high communication system performance. It pro-
vides a flexible solution for a heterogeneous environment,
which is characteristic for many distributed systems. But at
the same time the overhead incurred in providing interop-
erability by most middleware products adversely affects the
bandwidth and latency of the system that is crucial for many
parallel and real-time systems. When a conventional imple-
mentation of CORBA is applied to such systems, middleware
overheads can degrade performance to such an extent that the
high hardware bandwidths of a parallel system is only par-
tially occupied or the real time system specifications are vi-
olated [18]. As a result e.g. telecommunication products are
developed using proprietary middleware. Further CORBA
middleware is known to be a cause of limited scalability in
a number of general purpose distributed systems [1].

Although heterogeneity in distributed systems is natural,
most systems are characterized by limited heterogeneity, e.g.
PC clusters. Typically at least a subcluster in a system is
likely to be homogeneous. We can even count on totally equal
systems as a prerequisite for the best possible zero-copy op-
eration but do allow for heterogeneity and maintain standard
CORBA interoperability between the subclusters.

Other researchers have targeted CORBA applications that
run on a set of similar hosts and require that large amounts of
similar, non-typed or sparsely-typed data has to be communi-
cated from one host to another. In [2] the authors give three
performance optimization techniques that can essentially be
characterized as bypass operations. One of the techniques
prevents the data conversions between the native data types
used by all system components and by the standard data for-
mat specified in CORBA.

A few previous research efforts also describe different
ways of benchmarking high-performance CORBA ORBs. As
part of The ACE ORB (TAO) project [18] the latency and
throughput performance of a number of ORBs were mea-
sured. The figures include VisiBroker from Visigenic, Or-
bix from IONA, and SunSoft’s IIOP reference implementa-
tion [5, 6]. The authors discuss a fully interoperable IIOP im-
plementation and require that fine grained typed data has to
be marshaled according to the rules in the specification. The
performance optimization for minimal processing overheads
and minimal latency of an IIOP implementation provided a
first deeper insight into the problem of CORBA performance
and allowed to evaluate different approaches.

We will proceed in a similar way as we try to put the system
under a strict zero-copy regime for large data transfers. Still
while many other systems permitted the high performance
communication to be external or at least visible we will at-
tempt to hide our optimizations and incorporate them fully
into the middleware - so that the resulting API remains trans-
parent to the application program and also the ORB-to-ORB
communication remains fully CORBA compliant.
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2.1 Design Issues

Detailed profiling and examination of runtime code generated
for the IDL stubs and skeletons by MICO revealed that the
CORBA overhead mainly stems from the following sources:
data copying, request demultiplexing and memory allocation
(see also [17]). Since we focus on large data transfers demul-
tiplexing and memory allocation is not a limiting factor and
the data copying is the most interesting issue to address.

There are different approaches to bypass expensive data
handling. All those techniques are required but not sufficient
for a strict zero-copy implementation of an ORB.

Integration of MPI in CORBA A first option to optimize
bulk data handling in CORBA programs would be to integrate
a full blown message passing interface library into an ORB.
This route is taken by PARDIS [8]. This employs the key idea
of CORBA — interoperability through meta-language inter-
faces — to implement application-level interaction of hetero-
geneous parallel components in a distributed environment.

However, PARDIS extends the CORBA object model by in-
troducing SPMD objects representing data-parallel compu-
tations; these objects are implemented as a collaboration of
computing threads capable of directly interacting with the
PARDIS ORB — the entity responsible for brokering re-
quests between clients and servers.

Legacy Code Wrapping Another approach to use a compo-
nent architecture in high performance distributed computing
is to simply wrap MPI-based legacy code into CORBA com-
ponents. The authors of [11] describe a generator for wrap-
ping high performance legacy codes as Java/CORBA compo-
nents for use in a distributed component-based problem solv-
ing environment for a molecular dynamic simulations.

As CORBA cannot replace the MPI communication layer
due to architectural and performance constraints the neces-
sary parallelism was added to a CORBA object by running
a whole MPI runtime environment inside the object to man-
age the intra-communication within the parallel CORBA ob-
ject, and using CORBA to manage the inter-communication
among objects.

Bypass of Marshaling/Demarshaling The original idea be-
hind our optimization started with the observation that when
calls are local (i.e. inside the same machine) the extra data
copying that is involved by marshaling and demarshaling can
be skipped. This improves the ORB latency several times.
The idea can also be applied to inter-node communication in
a homogeneous system. By bypassing the marshaling also the
data copying within the middleware can be bypassed.

For remote communication with the same architecture on
client and server, certain types, especially octets which are
just 8-bit bytes, do not have to be marshaled and demarshaled
at all. The negotiation of the architecture and the typeset be-
tween the client and server is specified by the GIOP (General
InterORB Protocol) protocol already. We will look into this
approach and an implementation later in this paper.

To achieve an ORB with zero-copy data handling we will
apply all these previously known techniques and add an-
other important implementation principle taken from high
performance message passing systems in parallel computing
- namely the separation of control- and data transfers.

3 The Underlying Communication In-
frastructure

A low level messaging subsystem is part of all parallel or dis-
tributed systems and can transfer data from one process or
thread to another even across machine boundaries. In the
most general setting, such a transfer can be achieved by a
wide spectrum of hardware mechanisms starting with mech-
anisms for shared memory interprocess communication be-
tween two time-shared tasks executing on the same processor
using the same memory system to a message based commu-
nication operation between two separate processors and sep-
arate memory systems across an interconnecting network.

Although CORBA implements an RPC style synchronized
client server paradigm at the higher conceptional level the
predominant communication technique used inside the mid-
dleware itself is mainly the exchange of messages. By look-
ing closer into the internal communication service one dis-
covers that typical optimization techniques of messaging en-
vironments can be applied to eliminate buffering in ORBs as
well.

In a typical message passing library there exist a variety of
options to organize the transfers of control and data. In the
simplest case of a data transfer, the transfer is initiated by the
sender node and the original data is located in the local mem-
ory of this node. The sender then invokes a send operation to
transfer a message to the destination node. This destination
node invokes a receive operation to retrieve the message and
to store it into the local memory at the receiver.

3.1 Control and Data Transfer Messages

The basic messaging models can be defined with a single type
of messages. For the extension of these basic models to the
deposit model a precise distinction between control and data
messages is required [19]. All messages can be classified
based on their content, their length and their purpose and are
separated into two classes: control- and data messages:

Control messages are linked to synchronization The
transmission or reception of such a messages does not move
any data, but propagates a logical assertion between the
sender and the receiver. All implicit messages generated by
the lower protocol layers of a message passing protocol stack
are classified as control messages. Even global synchroniza-
tion primitives such as barriers are best viewed as a collection
of combined control messages, regardless of whether a bar-
rier is transmitted over a regular data communication channel
or whether it is performed by special purpose hardware.
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Data messages contain user data As the amount of data
moved by a logical message typically exceed the hardware
buffers along the communication path the proper handling of
data messages involves some local memory accesses at the
sender and the receiver side to retrieve or store the data.

Data messages require do be delivered from user space of one
process at the originator node to the user space of another
process at the destination node.

3.2 Decoupling Synchronization and Data
Transfers

The separation of synchronization and data transfer is a key
principle to increase communication performance in paral-
lel and distributed systems [20]. Fully decoupled and in-
dependent synchronization generates many opportunities for
optimization of both the synchronization and the data trans-
fer traffic in a network. Improvements include simple and
fast communication hardware as well as simple and well-
structured system software. The biggest difference is caused
by delegating buffer management to the application or the
middleware. Looking at the structure of CORBA applica-
tions this means that the best option to allocate and manage
the buffers is by the application or the stub and skeleton code
generated through the toolkit of the ORB.

In many scenarios the buffer management is handled by the
middleware and it becomes possible to optimize this buffer
management within the middleware implementation. This
does not effect the user application although it allows for
much faster communication. Instead of suggesting the use
of the magic parallelizing compilers that has global know-
ledge about all the communication patterns of an applica-
tion we rely on some partial knowledge of the programmer
about the typical communication patterns within the ORB.
To avoid changes to the application interface and the synchro-
nized client server messaging model of CORBA we introduce
a decoupling of synchronization and data transfers entirely
within the IIOP communication system of the ORB.

Just like for high performance message passing systems
the internal decoupled messaging mechanism in the MICO
ORB uses the separation of control- and data transfers for the
following optimization:

Target data directly to its final destination
Synchronization is required prior to data transfers if the
data is targeted directly to its final destination.

Put buffers under user control In communication systems
without system buffers, all data transfers are fully under user
or ORB control respectively.

Eliminate the need for buffering If synchronization and
data transfers are coupled, a combined control and data mes-
sage may involve buffering and result in costly storage man-
agement operations. With prior synchronization of every
transfer all buffering can be omitted.

Applying these optimizations to CORBA did allow us to
optimize buffering within the ORB to the extent that any per-
formance disadvantage of buffering can be eliminated from
the data path within the middleware. For large transfers this
means that the data is stored directly into the destination
buffers.

In the Direct Deposit messaging system [20] decoupled
synchronization is used. All messages are taken directly from
memory (in user space) at the sender and are automatically di-
rected to their final destination in the memory at the receiving
end. If temporary data structures or buffers are used, they are
under control of the middleware, the compiler or the user and
all synchronization messages are generated separately.

We will use the term direct deposit to indicate transfers
that can move their data directly to the destination and can
therefore be handled in a zero-copy regime with decoupled
synchronization. In the next section we show how to use this
implementation technique successfully in the CORBA ORB
to improve the performance of large data transfers over Giga-
bit Ethernet drastically.

4 Implementing Zero-Copy in an Ob-
ject Request Broker

To implement a zero-copy ORB according to all the de-
sign principles outlined in the previous section we modified
MICO, an open source ORB, for zero-copy data transfer. As
space permits we are describing the most interesting imple-
mentation issues in this project.

4.1 Data Structure
All the datatypes that can be defined in CORBA Interface De-
scription Language (IDL) are represented by a C++-class in
MICO. To internally identify these types MICO allocates a
unique key to each of them. This key is represented as an
integer value called Type Identifier (TID).

As we are looking into per-byte overhead we can spare a
lot of overhead when large blocks of data has to be moved. As
a first candidate for zero-copy operation we therefore look at
the CORBA type sequence<octet>. An octet is an 8-bit
value that undergoes no marshaling, neither by the client nor
by the server. A linear sequence of these octets is called an
octet stream. The semantic of streams in CORBA is quite
interesting, it defines an access method that allows an item of
sequence<octet> to be accessed directly via a pointer to
a memory buffer with variable size. Therefore this data type
fits the needs for direct deposit handling almost perfectly.

We use the octet streams as a first base for the implementa-
tion of an optimized direct deposit ORB. With this also all
more complex types like structs with streams or arrays of
streams will also be optimized as the communication of the
sequence of octets is always handled with the same optimized
zero-copy strategy. In more specialized applications other
data types, but mostly sequences or arrays of basic types,
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might become viable candidates for zero-copy as well. For
a proof of concept the type sequence<octet> will do as
the technique would be the same for other types.

In MICO sequence<octet> uses a generic template
SequenceTmpl<> which is used for all types of CORBA
sequences. SequenceTmpl<> describes the records of a
sequence by using the vector<>-type from the Standard
Template Library (STL). This solution is very elegant and
quite efficient for complex and heavily typed data structures.
But for the handling of simple octet streams (which are just
streams of simple bytes) such an abstraction is linked to pro-
cessing that leads to a large overhead.

4.2 Data Path Through the ORB
The data path of a static CORBA method invocation within
the MICO ORB is depicted schematically in Figure 3. A
data transfer proceeds as follows: We assume that a client
wants to communicate with a server. Therefore it allocates
its data and passes it by reference through a compiler gen-
erated object stub and through the StaticRequest
invoke interface to the IIOPProxy layer in the ORB.
This is the protocol layer which implements the standardized
and widely used Internet InterORB Protocol. From there the
data is passed further to the GIOPRequest class that gen-
erates a GIOP request message by marshaling the data in the
TCSeqOctet class. Then the GIOPConn class initiates a
connection to the server and the request message can be sent
using the TCPTransport implementation.

The server waits for messages to receive and uses the
TCPTransport implementation to read the request into the
buffers of the IIOPServer. This uses the GIOPRequest
class which demarshals the request by using TCSeqOctet
again. This demarshaling routine allocates the parameter data
in the ORB and passes it per reference up to the Method-
Dispatcher which calls the compiler generated object
skeleton. The skeleton maps the call to the requested
server object method that implements the requested user func-
tionality.

The major performance problem is introduced by the mar-
shaling routine that copies the data regardless of whether mar-

shaling is required or not (depicted by black arrows in Fig-
ure 3). The marshaling and demarshaling is handled by a
virtual class that defines the virtual methods marshal and
demarshal. For each of the CORBA parameter types there
exist a concrete subclass that implements the required func-
tionality by taking the parameter data and copying it to a
CORBA-request buffer using an unoptimized loop and block-
wise memcpy(). The IIOPProxy then generates a GIOP-
request, initiates a connection, and sends the message.

On the server the data is received by the GIOPConn class.
The do read method is initiated by a callback function and
runs until all the data for a GIOP-request message is received
and stored into a buffer and then passed up by a further call-
back to the IIOPServer. The server then triggers demar-
shaling for the received GIOP-request and lets the Method-
Dispatcher call the specified object implementation and
pass up the parameters. The final user method is wrapped by
the server skeleton code which is implemented as a base
class of the object implementation.

This fairly complex data path is the route that has to be
optimized for zero-copy data passing within an ORB.

4.3 A Zero-Copy Datatype: The Sequence of
ZC Octet

The basis for our direct deposit optimization of large transfers
is a newly introduced implementation of the CORBA-type
sequence<octet>. To compare an optimized stream ver-
sion to the standard stream version and to allow the continued
use of the standard types during development we introduced
a new type ZC Octet, whose representation and API is iso-
morphic to the standard Octet while at the same time all
corresponding methods are modified to support zero-copy di-
rect deposit. For further data types the method of optimiza-
tion would be the same.

As a first modification we had to look at the internal data
representation of SequenceTmpl<> which is based on the
C++ STL vector<>-type. This is not suitable for direct
deposit. Therefore we had to find ways to store the data as
untyped data directly in a memory buffer. We extended the
definition of the SequenceTmpl<> class by such a buffer.
Two new pointers, one to a reserved memory block, another
to a page aligned area in this buffer and an integer value for
the effective buffer size were added to the template class.

With this new specializations of the SequenceTmpl<>
methods we can enable MICO to internally handle data trans-
fers by direct deposit. The new methods are exposed to
the application developer to enable the processing of zero-
copy data correctly in the application. Especially useful for
zero-copy programming at the application level is a length-
method which is used for the initialization of a data block of
a certain length and an new operator to access a data block.

Finally the IDL compiler has to be modified to support
the new ZC Octet type. Since we wanted to use both the
standard and optimized octets simultaneously during the test
phase we had to tell the IDL compiler to generate ZC Octet
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stubs and ZC Octet skeletons. These look the same
and are used the same way as the standard sequence stubs
and skeletons but use the ZC prefix and the appropriate type
identifier MICO TID ZC OCTET.

4.4 The Direct Deposit Sender
MICO statically instantiates methods for marshaling and de-
marshaling depending on the TID of the CORBA datatype
used in the stub. It is therefore necessary to implement a new
concrete class TCSeqZCOctet which provides the func-
tionality for the marshaling and demarshaling.

In the case of a direct deposit (meaning a homogeneous
platform is presumed) the data is never actually marshaled but
just passed further on to the TCPTransport-layer (see Fig-
ure 4). We just need to make sure that no accidental copy is
introduced. A GIOPRequest header is generated which con-
tains the size of the data block that is needed by the receiver
to correctly receive the GIOPRequest message. Here the sep-
aration of the control transfer takes place. While the GIO-
PRequest message header can be sent by the IIOPProxy
over the regular networking infrastructure the data is passed
to the high performance TCPTransport layer directly by
the marshaling routine.

4.5 The Direct Deposit Receiver
The zero-copy communication at the receiver side of MICO
has a totally different internal structure compared to the
sender side. In MICO receiving information heavily relies on
callbacks. Therefore it was not possible to integrate the data
reception directly into the TCSeqZCOctet demarshaling
routine as done in the sender. Instead of using the demarshal-
ing routine we took the do read-method in the GIOPConn
class and separated the normal case and a direct deposit re-
ceive by introducing two distinct callbacks.

In the case of a direct deposit request the initialization sup-
plies a memory page buffer for the GIOPRequest header. Af-

ter receiving this header the receiver reads the size of the
following direct deposit block and allocates an appropriately
sized and aligned buffer. While receiving the parameters over
a zero-copy socket interface [10] the data is directly mapped
to this buffer. Afterwards a pointer is set to this buffer allow-
ing the demarshaling routine to directly access the data and
pass it further without copying.

After the CORBA-request (without direct deposit data
blocks) has been received by do read() the demarshaling
and the method of the registered object is triggered through
another callback of the IIOPServer. While the rest of the
CORBA-request is handled normally the demarshaling rou-
tine uses the new zero-copy method for the direct deposit
data. This allows to pass just pointers instead of values to
the method call of the registered object. With this regime an
exclusive passing-per-reference becomes feasible and copy-
ing is not needed anymore while still keeping the standard
IIOP protocol and user interface.

The combination of a direct deposit sender and receiver in-
troduces a fast data path for sequence<ZC Octet> that
can pass data between the CORBA application and the high
performance communication system software without any
copies. With this extension to the ORB middleware a true
zero-copy regime becomes possible, provided the application
follows the idea of zero-copy and a highly efficient zero-copy
TCP/IP protocol stack is used like in our setting.

5 Performance Evaluation

As a starting point for the performance evaluation we de-
termine the data transfer performance of an unoptimized
communication between two nodes using a standard TCP/IP
socket API and between two CORBA objects communicat-
ing through the MICO ORB. We use a version of the TTCP
benchmark for the socket- and for the CORBA transfers.

Our hardware platform is a cluster of commodity PCs
built from off-the-shelf 400 MHz Pentium II PCs, running
Linux 2.2, connected through Gigabit Ethernet by fiber op-
tic cables. This serves as a prove of concept as the copy
bandwidth of such machines limits the communication per-
formance dramatically when copies are involved. Our Gi-
gabit Ethernet test bed comprises a SmartSwitch 8600 manu-
factured by Cabletron and GNIC-II Gigabit Ethernet interface
cards manufactured by PacketEngines Corp.

For the second most interesting part of the performance test
we used our highly optimized TCP/IP communication system
software based on our own de-/fragmenting NIC driver us-
ing a probabilistic implementation technique [10] to handle
the common case at maximal speed. This allows us to test a
strict zero-copy communication mode involving the middle-
ware and all other software in the system. Despite the high
degree of optimization the communication system provides
full interoperability with standard Gigabit Ethernet, standard
TCP and standard IIOP communication. Any deviation from
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the standard is fully transparent and serves only the optimiza-
tion for large data transfers.

5.1 TTCP - TCP Performance Benchmark

The data for the experiments has been produced and con-
sumed by an extended version of the widely available TCP
protocol benchmarking tool TTCP [22]. This tool measures
the end-to-end data transfer throughput in MBit/s from a
transmitter process to a remote receiver process. It can use
any communication infrastructure including BSD sockets and
CORBA. The following versions of TTCP were implemented
and used as benchmarks:

Raw TCP version This is the standard TTCP program im-
plemented in C. It uses socket calls to transfer and receive
data via TCP/IP.

Zero-Copy TCP version This version replaces the default
socket interface by the zero-copy sockets described in [10].

CORBA version This version substitutes all C function calls
of the BSD socket interface with stubs and skeletons gener-
ated from a CORBA IDL specification. The IDL specification
uses a sequence parameter for the data buffer.

We ran several series of tests that transferred several
amounts of user data ranging from 4 KByte to 16 MByte
in aligned 4 KByte buffers represented by a memory page.
Since the zero-copy TCP-socket implementation provides its
optimization for transfer sizes starting at 4 KByte pages only,
the data buffers were increased by 4 KByte increments.

5.2 The Performance of Unmodified MICO

As a reference case we determine the performance of an un-
optimized (or real world) data transfer in MICO. Figure 5
summarizes the TTCP benchmark results for transferring data
blocks of different sizes across a Gigabit Ethernet link. It
becomes evident that the CORBA-based TTCP implementa-
tion runs considerably slower than the raw TCP version pro-
grammed in C. The CORBA performance for all tests is poor
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Figure 5. Bandwidths measured with TTCP for
unoptimized sockets and CORBA

and reaches a saturation around 50 MBit/s out of 1 GBit/s
possible in theory (sic!). The achieved bandwidths would not
even use a Fast Ethernet to its limit. With the raw TCP socket
an application can achieve 330 MBit/s. The limitation to one
third of the theoretical speed is due to internal data copies in
the TCP/IP stack. The potential for a zero-copy optimization
is therefore huge if the copies in the TCP/IP stack and the
copies in the CORBA middleware can be removed.

Since in this test the data block is sent as an untyped stream
the CORBA presentation layer does not need to perform com-
plex marshaling to handle byte-ordering differences between
sender and receiver. Still this does not help the performance
as the standard MICO CORBA implementation incurs a sig-
nificant overhead.

We instrumented the ORB source code to pinpoint the
sources of this overhead. The test shows that the highest
cost incurs due to data copying and data inspection. Even
if the transfer would qualify for a highly optimized contigu-
ous memory-to-memory copy using MMX instructions, the
portable open source project MICO uses a very general un-
optimized copy loop that is able to handle all different data
types correctly instead of using specialized routines that are
optimized for each data types.

In [6] a similar analysis is done for Orbix and ORBeline
where the authors found similar performance bottlenecks.

5.3 Performance Results of MICO With Zero-
Copy

Figure 6 illustrates the TTCP benchmark results for the two
versions of the TCP socket interface and of two different ver-
sions of the MICO ORB as well as the winning combination
of zero-copy CORBA with zero-copy TCP. The performance
data in the left chart shows nicely that our zero-copy TCP
stack performs much better than the original copying stack.
The large performance gain for small messages is achieved
through a big improvement in the overhead of the read()
and write() system calls. The improvement allows to
achieve very good throughput figures for transfers as small
as a single memory page.

The important performance improvement of the ORB im-
plementation described in this paper is shown in the right
chart. For the zero-copy version of the ORB the large over-
heads of CORBA are gone and the performance of the op-
timized zero-copy ORB nearly matches the raw TCP-socket
version of TTCP. That proves that the optimized ORB han-
dles the ZC Octets correctly by passing the stream straight
through the ORB without introducing any copies.

The best version of our prototype combines the perfor-
mance advantages of a zero-copy TCP/IP stack with the zero-
copy ORB. For large blocks this combination of ORB and
protocol stack achieves 550 MBit/s throughput for large data
transfers, while the application still fully complies with the
CORBA model for distributed objects and components.
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gain for the zero-copy socket interface, the right chart the gain of the zero-copy optimized ORB.

5.4 Application Performance Evaluation

Looking at the published experience reports with applications
so far the use of distributed object middleware in high per-
formance parallel and distributed computing has been fairly
limited. With the optimizations introduced in this paper the
middleware communication efficiency could be increased sig-
nificantly making it much more valuable for high speed dis-
tributed computing applications.

To evaluate the middleware with a real-life application we
introduced a service-based framework to support transparent
parallelization with CORBA [9]. This allows a very short and
intuitive development process resulting in zero-copy aware,
parallel and distributed CORBA applications. As a tech-
nology demonstrator we implemented a real-time MPEG2-
to-MPEG4 transcoder that uses the framework to parallelize
an object oriented MPEG-4 encoder modeled cleanly with
distributed objects. The parallel encoder objects run on a
cluster of PCs equipped with Gigabit Ethernet. The video
data streams that consists of a huge amount of images (or
video frames) either grabbed form a HDTV frame grabber
or extracted from a DVD MPEG-2 stream is distributed by
CORBA requests.

We already showed the performance achievement of a fac-
tor of 10 for an optimized ORB communicating through a
zero-copy operating system stack versus the original ORB.
This entire performance gain is posed to our application. The
resulting high performance distributed processing application
provides MPEG-4 encoding in real-time for full HDTV reso-
lution and full frame rate. Larger clusters of commodity PCs
can even transcode multi-channel streams containing several
parallel video streams.

6 Conclusion

Although heterogeneity in distributed systems is natural,
most high performance distributed computing platforms are
characterized by some very limited forms of heterogeneity.
Clusters of PCs for example include machines of several gen-

erations but within a generation the machines are all alike.
A general and flexible infrastructure like CORBA (Common
Object Request Broker Architecture) is highly desirable but
for the communication within the homogeneous parts some
optimized high performance communication software is re-
quired. While a number of previous papers have addressed
the processing overheads for a single remote method invoca-
tion our work improves the maximal bandwidth during the
transfer of large data sets between distributed objects.

For maximal bandwidth and optimal use of the underly-
ing communication system memory-to-memory copies along
the data path must be avoided. We prove that a strict zero-
copy regime can be maintained in a CORBA application us-
ing a highly optimized ORB on top of a zero-copy optimized
TCP/IP protocol stack. We propose and implement such an
optimized system software infrastructure that can handle un-
typed data in CORBA applications most efficiently and pass
it between the distributed objects without extra data copies.

We propose to transfer the data with standard CORBA
method calls, but optimize data handling within the ORB us-
ing a clever Separation of Control- and Data Transfers which
enables a true zero-copy solution based on direct deposit mes-
saging. The separation of synchronization and data transfer
was a key insight that permitted better efficiency and best pos-
sible communication performance in data parallel computing.
The principle is similarly effective for optimizing ORB per-
formance in high performance distributed computing. The
biggest speed improvements are caused by a clever buffer
management that helps to avoid copies. For CORBA appli-
cations this means that the buffers are allocated and managed
by the application or by the stub and skeleton code generated
by the toolkit that comes with an ORB.

The performance results of our optimized ORB based on
MICO looks very promising. The throughput results of
large data transfers through our optimized ORB can match
the maximal achievable performance in the transfers of raw
TCP/IP-sockets. Given the limited memory performance of
our testbed the good throughput figures prove conclusively
that the optimized ORB handles all ZC Octet sequences
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correctly by just passing them by reference through the ORB,
without copies and without introducing undue overhead.

The zero-copy enabled ORB opens the way to an all zero-
copy distributed application using a zero-copy TCP/IP pro-
tocol stack over Gigabit Ethernet. In this setting the opti-
mized ORB still comes close to the maximal performance.
For large blocks of data our all zero-copy software infrastruc-
tures achieves 550 MBit/s throughput on older 400 MHz Pen-
tium II PCs over Gigabit Ethernet. The 550 MBit/s constitute
a performance improvement of tenfold over the 50 MBit/s
that are measured on the original ORB communicating over
the standard TCP/IP stack. This confirms our thesis that a
zero-copy regime is the most essential technique to improve
the software efficiency in communication systems. For newer
machines we can achieve the full communication bandwidth
of Gigabit Ethernet with a CPU utilization of just 30% versus
100% with the original stack.

We tested the full functionality of our optimized commu-
nication infrastructure with a prototype of a distributed ap-
plication. The CORBA based application uses a cluster of
commodity PCs or a desktop grid as a highly flexible compute
platform to encode MPEG-4 multimedia streams in real-time.

Despite this high performance the application code is still
fully in compliance with the CORBA standard. That means
that the programmer can design an application in the CORBA
framework based on the concept of distributed objects and
distributed components. And also for the ORB-to-ORB com-
munication the standardized IIOP (Internet InterORB Proto-
col) is preserved.
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